The outstanding properties of graphene-based components, such as twisted graphene, motivates nanoelectronic researchers to focus on their applications in device technology. Twisted graphene as a new class of graphene structures is investigated in the platform of transistor application in this research study. Therefore, its geometry effect on Schottky transistor operation is analyzed and the relationship between the diameter of twist and number of twists are explored. A metal-semiconductor-metal twisted graphene-based junction as a Schottky transistor is considered. By employing the dispersion relation and quantum tunneling the variation of transistor performance under channel length, the diameter of twisted graphene, and the number of twists deviation are studied. The results show that twisted graphene with a smaller diameter affects the efficiency of twisted graphene-based Schottky transistors. Additionally, as another main characteristic, the I-V is explored, which indicates that the threshold voltage is increased by diameter and number of twists in this type of transistor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348481PMC
http://dx.doi.org/10.3390/ma14154109DOI Listing

Publication Analysis

Top Keywords

twisted graphene
16
twisted graphene-based
12
schottky transistor
12
number twists
12
graphene-based schottky
8
transistor
6
twisted
6
graphene
5
monolayer twisted
4
graphene-based
4

Similar Publications

In a dilute two-dimensional electron gas, Coulomb interactions can stabilize the formation of a Wigner crystal. Although Wigner crystals are topologically trivial, it has been predicted that electrons in a partially filled band can break continuous translational symmetry and time-reversal symmetry spontaneously, resulting in a type of topological electron crystal known as an anomalous Hall crystal. Here we report signatures of a generalized version of the anomalous Hall crystal in twisted bilayer-trilayer graphene, whose formation is driven by the moiré potential.

View Article and Find Full Text PDF

The discovery of superconductivity in twisted bilayer and trilayer graphene has generated tremendous interest. The key feature of these systems is an interplay between interlayer coupling and a moiré superlattice that gives rise to low-energy flat bands with strong correlations. Flat bands can also be induced by moiré patterns in lattice-mismatched and/or twisted heterostructures of other two-dimensional materials, such as transition metal dichalcogenides (TMDs).

View Article and Find Full Text PDF

Artificial Fine-Tuned van Hove Singularity in Twisted Bilayer and Double-Twist Trilayer Graphene with Enhanced Absorption for Photodetection and Photoemission in the Near-Infrared II Range.

ACS Appl Mater Interfaces

January 2025

State Key Lab of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510275, China.

Optical responses of twisted bilayer graphene at targeted wavelengths can be amplified by leveraging energy levels of van Hove singularities (VHS) via tuning periods of moiré superlattices. Therefore, precise control of twist angles as well as the moiré superlattices is necessary for fabricating integrated optoelectronic devices such as photodetectors and emitters. Although recent advances in twist angle control help the observation of correlated states in twisted magic-angle graphene structures, the impact of such precise control on enhanced optical absorption is still under investigation.

View Article and Find Full Text PDF

Engineering Polar Vortices via Strain Soliton Interactions in Marginally Twisted Multilayer Graphene.

Nano Lett

January 2025

National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu, China.

Strain solitons have been widely observed in van der Waals materials and their heterostructures. They can manifest as one-dimensional (1D) wires and quasi-two-dimensional (2D) networks. However, their coexistence within the same region has rarely been observed, and their interplay remains unexplored.

View Article and Find Full Text PDF

The low-frequency resistance fluctuations, or noise, in electrical resistance not only set a performance benchmark in devices but also form a sensitive tool to probe nontrivial electronic phases and band structures in solids. Here, we report the measurement of such noise in the electrical resistance in twisted bilayer graphene (tBLG), where the layers are misoriented close to the magic angle (θ ∼ 1°). At high temperatures ( ≳ 60-70 K), the power spectral density (PSD) of the fluctuation inside the low-energy moiré bands is predominantly ∝1/, where is the frequency, being generally lowest close to the magic angle, and can be well-explained within the conventional McWhorter model of the '1/ noise' with trap-assisted density-mobility fluctuations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!