Impact of Physico-Chemical Properties of Cellulose Nanocrystal/Silver Nanoparticle Hybrid Suspensions on Their Biocidal and Toxicological Effects.

Nanomaterials (Basel)

INRAE, Institut National de Recherche Pour L'agriculture, L'alimentation et L'environnement, BIA, Biopolymères Interactions et Assemblages, 44316 Nantes, France.

Published: July 2021

There is a demand for nanoparticles that are environmentally acceptable, but simultaneously efficient and low cost. We prepared silver nanoparticles (AgNPs) grafted on a native bio-based substrate (cellulose nanocrystals, CNCs) with high biocidal activity and no toxicological impact. AgNPs of 10 nm are nucleated on CNCs in aqueous suspension with content from 0.4 to 24.7 wt%. XANES experiments show that varying the NaBH4/AgNO3 molar ratio affects the AgNP oxidation state, while maintaining an fcc structure. AgNPs transition from 10 nm spherical NPs to 300 nm triangular-shaped AgNPrisms induced by HO post-treatment. The 48 h biocidal activity of the hybrid tested on is intensified with the increase of AgNP content irrespective of the Ag/Ag ratio in AgNPs, while the AgNSphere-AgNPrism transition induces a significant reduction of biocidal activity. A very low minimum inhibitory concentration of 0.016 mg AgNP/mL is determined. A new long-term biocidal activity test (up to 168 h) proved efficiency favorable to the smaller AgNPs. Finally, it is shown that AgNPs have no impact on the phagocytic capacity of mammalian cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8308223PMC
http://dx.doi.org/10.3390/nano11071862DOI Listing

Publication Analysis

Top Keywords

biocidal activity
16
agnps
6
biocidal
5
impact physico-chemical
4
physico-chemical properties
4
properties cellulose
4
cellulose nanocrystal/silver
4
nanocrystal/silver nanoparticle
4
nanoparticle hybrid
4
hybrid suspensions
4

Similar Publications

Introduction: The persistence of in the contaminated environment is sustained by tolerance to biocides and ability to growth as biofilm. The aim of the study was to analyze the susceptibility of biofilms to chlorhexidine (CHX) and benzalkonium (BZK) biocides and the ability of natural monomeric stilbenoid resveratrol (RV) to modulate the phenomenon.

Methods: Biofilm formation and preformed biofilm were tested by Crystal violet and tetrazolium salt reduction assay, respectively.

View Article and Find Full Text PDF

Controlling Listeria monocytogenes and its associated biofilms in the food industry requires various disinfection techniques, including physical, chemical, and biological treatments. Biocides, owing to their ease of use, cost-effectiveness, dissolvability in water, and efficacy against a wide range of microorganisms, are frequently selected options. Nonetheless, concerns have been raised about their efficacy in controlling L.

View Article and Find Full Text PDF

Background: Inactivation of infectious liquid waste can be performed by different means, including autoclaving or chemical inactivation. Autoclaving is most widely used, but cannot always be implemented, so that chemical inactivation is a possible alternative. However, its efficacy has to be proven by in-house validation.

View Article and Find Full Text PDF

Purpose: Approximately 20% of all breast cancer cases are classified as triple-negative breast cancer (TNBC), which represents the most challenging subtype due to its poor prognosis and high metastatic rate. Caffeic acid phenethyl ester (CAPE), the main component extracted from propolis, has been reported to exhibit anticancer activity across various tumor cell types. This study aimed to investigate the effects and mechanisms of CAPE on TNBC.

View Article and Find Full Text PDF

Bactericidal Metal-Organic Gallium Frameworks - Synthesis to Application.

Mol Pharm

December 2024

Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Gallium, a trace metal not found in its elemental form in nature, has garnered significant interest as a biocide, given its ability to interfere with iron metabolism in bacteria. Consequently, several gallium compounds have been developed and studied for their antimicrobial properties but face challenges of poor solubility and formulation for delivery. Organizing the metal into three-dimensional, hybrid scaffolds, termed metal-organic frameworks (MOFs), is an emerging platform with potential to address many of these limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!