The dispersion, electrical conductivities, mechanical properties and resistance-strain response behaviors of multiwalled carbon nanotube (MWCNT)/natural rubber (NR) composites synthesized by the different processing conditions are systematically investigated at both macro- and micro-perspectives. Compared with the solution and flocculation methods, the two roll method produced the best MWCNTs distribution since the materials are mixed by strong shear stress between the two rolls. An excellent segregated conductive network is formed and that a low percolation threshold is obtained (~1 wt.%) by the two roll method. Different from the higher increases in conductivity for the composites obtained by the solution and flocculation methods when the MWCNT content is higher than 3 wt.%, the composite prepared by the two roll method displays obvious improvements in its mechanical properties. In addition, the two roll method promotes good stability, repeatability, and durability along with an ultrahigh sensitivity ( = 974.2) and a large strain range ( = 109%). The 'shoulder peak' phenomenon has not been observed in the composite prepared by the two roll method, confirming its potential for application as a large deformation monitoring sensor. Moreover, a mathematical model is proposed to explain the resistance-strain sensing mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8308229 | PMC |
http://dx.doi.org/10.3390/nano11071845 | DOI Listing |
J Clin Med
January 2025
Balance & Dizziness Center, Department of Otorhinolaryngology, Head & Neck Surgery and Audiology, Aalborg University Hospital, 9000 Aalborg, Denmark.
Accurate head positioning is essential for diagnostics of benign paroxysmal positional vertigo (BPPV). This study aimed to quantify the head angles and angular velocities during traditional manual BPPV diagnostics in patients with positional vertigo. : A prospective, observational cohort study was conducted at a tertiary university hospital outpatient clinic.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
School of Engineering, Deakin University, 75 Pigdons Rd., Waurn Ponds, Geelong, VIC 3216, Australia.
The metal bipolar plate is a critical component of the hydrogen fuel cell stack used in proton exchange membrane fuel cells. Bipolar plates must have high accuracy micro-channels with a high aspect ratio () between the channel depth and the half periodic width to achieve optimal cell performance. Conventional forming methods, such as micro-stamping, hydroforming, and rubber pad forming, cannot achieve these high ARs given that in these processes, material deformation is dominated by stretch deformation.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Mechatronics Engineering Department, Yildiz Technical University, Istanbul 34349, Turkey.
The efficient mixing of fluids at microscale dimensions presents challenges due to the dominant laminar flow regime which restricts convective mixing. This study introduces a numerical analysis of a novel microrobotic mixing system with a levitated propeller robot, driven by magnetic fields, within a Y-shaped microchannel with a square cross-section (500 × 500 μm). Our research investigates the fluid mixing effectiveness facilitated by the microrobot through various levitation heights and orientations to enhance the mixing index (MI).
View Article and Find Full Text PDFInt J Environ Res Public Health
January 2025
Research Centre for Public Health, Equity and Human Flourishing (PHEHF), Torrens University Australia, Adelaide, SA 5000, Australia.
Background: Universal health coverage (UHC) is a global priority, with the goal of ensuring that everyone has access to high-quality healthcare without suffering financial hardship. In Africa, most governments have prioritized UHC over the last two decades. Despite this, the transition to UHC in Africa is seen to be sluggish, with certain countries facing inertia.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Engineering, Mathematics and Science Education, Mid Sweden University, SE-851 70 Sundsvall, Sweden.
A recyclability perspective is essential in the sustainable development of energy storage devices, such as lithium-ion batteries (LIBs), but the development of LIBs prioritizes battery capacity and energy density over recyclability, and hence, the recycling methods are complex and the recycling rate is low compared to other technologies. To improve this situation, the underlying battery design must be changed and the material choices need to be made with a sustainable mindset. A suitable and effective approach is to utilize bio-materials, such as paper and electrode composites made from graphite and cellulose, and adopt already existing recycling methods connected to the paper industry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!