Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Carbon nanotubes (CNTs) reinforced double-layered Cu-Ni composite foams (Cu-Ni/CNT foams) were prepared through chemical plating and electrodeposition, for the purpose of combining enhanced mechanical and electromagnetic shielding properties. The microstructure characterization revealed a quite uniform dispersion of the CNTs embedded in the metal layers, even after heat treatments. The property testing showed the compressive strength, energy absorption capacity and electromagnetic shielding effectiveness (SE) of Cu-Ni/CNTs foams were significantly improved, as compared to Cu-Ni foams. The heat treatments of the composite foams resulted in an interdiffusion of the Cu and Ni layers, causing an increase of compressive strength and a slight decrease of average SE. The possible mechanisms of the property evolution are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8308128 | PMC |
http://dx.doi.org/10.3390/nano11071772 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!