Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ability to predict the behaviour of polymeric nanomedicines can often be obfuscated by subtle modifications to the corona structure, such as incorporation of fluorophores or other entities. However, these interactions provide an intriguing insight into how selection of molecular components in multifunctional nanomedicines contributes to the overall biological fate of such materials. Here, we detail the internalisation behaviours of polymeric nanomedicines across a suite of cell types and extrapolate data for distinguishing the underlying mechanics of cyanine-5-driven interactions as they pertain to uptake and endosomal escape. By correlating the variance of rate kinetics with endosomal escape efficiency and endogenous lipid polarity, we identify that observed cell-type dependencies correspond with an underlying susceptibility to dye-mediated effects and nanomedicine accumulation within polar vesicles. Further, our results infer that the ability to translocate endosomal membranes may be improved in certain cell types, suggesting a potential role for diagnostic moieties in trafficking of drug-loaded nanocarriers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8308131 | PMC |
http://dx.doi.org/10.3390/nano11071745 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!