Therapeutic cancer vaccines have become increasingly qualified for use in personalized cancer immunotherapy. A deeper understanding of tumor immunology and novel antigen delivery technologies has assisted in optimizing vaccine design. Therapeutic cancer vaccines aim to establish long-lasting immunological memory against tumor cells, thereby leading to effective tumor regression and minimizing non-specific or adverse events. However, due to several resistance mechanisms, significant challenges remain to be solved in order to achieve these goals. In this review, we describe our current understanding with respect to the use of the antigen repertoire in vaccine platform development. We also summarize various intrinsic and extrinsic resistance mechanisms behind the failure of cancer vaccine development in the past. Finally, we suggest a strategy that combines immune checkpoint inhibitors to enhance the efficacy of cancer vaccines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348347 | PMC |
http://dx.doi.org/10.3390/ijms22158035 | DOI Listing |
Lancet
January 2025
Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK; Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK. Electronic address:
Background: In the UK, booster COVID-19 vaccinations have been recommended biannually to people considered immune vulnerable. We investigated, at a population level, whether the absence of detectable anti-SARS-CoV-2 spike protein IgG antibody (anti-S Ab) following three or more vaccinations in immunosuppressed individuals was associated with greater risks of infection and severity of infection.
Methods: In this prospective cohort study using UK national disease registers, we recruited participants with solid organ transplants (SOTs), rare autoimmune rheumatic diseases (RAIRDs), and lymphoid malignancies.
Eur J Pharmacol
January 2025
School of Biotechnology, KIIT Deemed to be University, Bhubaneswar - 751024, Odisha, India. Electronic address:
Colorectal cancer (CRC) remains a significant global health challenge, demanding continuous advancements in treatment strategies. This review explores the complexities of targeting colorectal cancer stem cells (CSCs) and the mechanisms contributing to resistance to 5-fluorouracil (5-FU). The efficacy of 5-FU is enhanced by combination therapies such as FOLFOXIRI and targeted treatments like bevacizumab, cetuximab, and panitumumab, particularly in KRAS wild-type tumors, despite associated toxicity.
View Article and Find Full Text PDFJ Control Release
January 2025
Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan. Electronic address:
Hepatocellular carcinoma (HCC) is a leading cause of cancer death that has limited treatment options for advanced stages. Although PD-1 inhibitors such as nivolumab and pembrolizumab have been approved for advanced HCC treatment, their effectiveness is often hampered by the immunosuppressive tumor microenvironment (TME), which is due to hypoxia-driven CXCL12/CXCR4 axis activation. In this study, we developed 807-NPs, lipid-coated tannic acid (TA) nanoparticles that encapsulate BPRCX807, a potent CXCR4 antagonist to target HCC.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
Telomerase, constituted by the dynamic duo of telomerase reverse transcriptase (TERT), the catalytic entity, and an integral RNA component (TERC), is predominantly suppressed in differentiated human cells due to postnatal transcriptional repression of the TERT gene. Dysregulation of telomerase significantly contributes to cancer development via telomere-dependent and independent mechanisms. Telomerase activity is often elevated in advanced cancers, with TERT reactivation and upregulation of TERC observed in early tumorigenesis.
View Article and Find Full Text PDFInfect Dis (Lond)
January 2025
Department of Medicine, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine.
Human Metapneumovirus (HMPV) is a re-emerging respiratory pathogen causing significant morbidity and mortality, particularly among young children, the elderly, and immunocompromised individuals. First identified in 2001, HMPV has since been recognised as a leading cause of acute respiratory tract infections (ARTIs) worldwide. Its transmission occurs through droplets, direct contact, and surface contamination, with crowded spaces and healthcare facilities serving as key environmental amplifiers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!