Neurotrophins and their receptors are relevant factors in controlling neuroblastoma growth and progression. The histone deacetylase (HDAC) inhibitor valproic acid (VPA) has been shown to downregulate TrkB and upregulate the p75NTR/sortilin receptor complex. In the present study, we investigated the VPA effect on the expression of the neurotrophin-3 (NT-3) receptor TrkC, a favorable prognostic marker of neuroblastoma. We found that VPA induced the expression of both full-length and truncated (TrkC-T1) isoforms of TrkC in human neuroblastoma cell lines without (SH-SY5Y) and with (Kelly, BE(2)-C and IMR 32) amplification. VPA enhanced cell surface expression of the receptor and increased Akt and ERK1/2 activation by NT-3. The HDAC inhibitors entinostat, romidepsin and vorinostat also increased TrkC in SH-SY5Y, Kelly and BE(2)-C but not IMR 32 cells. TrkC upregulation by VPA involved induction of RUNX3, stimulation of ERK1/2 and JNK, and ERK1/2-mediated Egr1 expression. In SH-SY5Y cell monolayers and spheroids the exposure to NT-3 enhanced the apoptotic cascade triggered by VPA. Gene silencing of both TrkC-T1 and p75NTR prevented the NT-3 proapoptotic effect. Moreover, NT-3 enhanced p75NTR/TrkC-T1 co-immunoprecipitation. The results indicate that VPA upregulates TrkC by activating epigenetic mechanisms and signaling pathways, and sensitizes neuroblastoma cells to NT-3-induced apoptosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8346142 | PMC |
http://dx.doi.org/10.3390/ijms22157790 | DOI Listing |
Dokl Biochem Biophys
January 2025
Center for Strategic Planning and Management of Biomedical Health Risks, Federal Medical and Biological Agency, Moscow, Russia.
Unlabelled: The association of the pathogenesis of neurodegenerative diseases, depression, anxiety, and cognitive disorders with neurotrophin-3 deficiency determines the prospect of creating drugs with a similar mechanism of action. Since the use of full-length NT-3 is limited by unsatisfactory pharmacokinetic properties, the creation of low-molecular mimetics of neurotrophin-3 that are active when administered systemically is relevant. The Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies has created a dimeric dipeptide mimetic of the 4th loop of NT-3, hexamethylenediamide bis-(N-γ-oxybutyryl-L-glutamyl-L-asparagine) with the laboratory code GTS-302, which activates TrkC and TrkB receptors.
View Article and Find Full Text PDFDokl Biochem Biophys
January 2025
Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia.
It was previously shown that the original dipeptide mimetic of the 4th loop of neurotrophin-3 (NT-3) hexamethylenediamide bis-(N-monosuccinyl-L-asparaginyl-L-asparagine) (GTS-301), like the full-length neurotrophin, predominantly activates the tyrosine kinase receptor TrkC and has a neuroprotective effect in vitro at concentrations of 10-10 M, as well as antidiabetic (0.1 and 0.5 mg/kg) and antidepressant (5 and 10 mg/kg) effects after systemic administration in rodents.
View Article and Find Full Text PDFPathol Oncol Res
January 2025
Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
The () gene family is of rising importance as their fusions are oncogenic, and specific target drugs are available to inhibit the chimera proteins. Pan-TRK antibody, which shows the overexpression of the genes, is a useful tool to detect tumors with or without gene alterations, due to high negative predictive value. Though it is well known that pan-TRK immunopositivity is usually not connected to fusion, the role of other possible genetic alterations is under-researched.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China. Electronic address:
This study aims to develop and evaluate a novel therapeutic strategy for Alzheimer's disease (AD) by overcoming the blood-brain barrier (BBB) limitations of Neurotrophin-3 (NT-3). NT-3, a critical neurotrophic factor, plays essential roles in hippocampal neuron growth, survival, and synaptic plasticity, making it a promising candidate for AD treatment. However, its clinical application is hindered by its inability to cross the BBB.
View Article and Find Full Text PDFPLoS Genet
December 2024
Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!