With advances in next-generation sequencing technologies, the bisulfite conversion of genomic DNA followed by sequencing has become the predominant technique for quantifying genome-wide DNA methylation at single-base resolution. A large number of computational approaches are available in literature for identifying differentially methylated regions in bisulfite sequencing data, and more are being developed continuously. Here, we focused on a comprehensive evaluation of commonly used differential methylation analysis methods and describe the potential strengths and limitations of each method. We found that there are large differences among methods, and no single method consistently ranked first in all benchmarking. Moreover, smoothing seemed not to improve the performance greatly, and a small number of replicates created more difficulties in the computational analysis of BS-seq data than low sequencing depth. Data analysis and interpretation should be performed with great care, especially when the number of replicates or sequencing depth is limited.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345583PMC
http://dx.doi.org/10.3390/ijerph18157975DOI Listing

Publication Analysis

Top Keywords

comprehensive evaluation
8
differential methylation
8
methylation analysis
8
analysis methods
8
bisulfite sequencing
8
sequencing data
8
number replicates
8
sequencing depth
8
sequencing
6
evaluation differential
4

Similar Publications

The levels of capsaicin (CAP) and hydroxy-α-sanshool (α-SOH) are crucial for evaluating the spiciness and numbing sensation in spicy hotpot seasoning. Although liquid chromatography can accurately measure these compounds, the method is invasive. This study aimed to utilize hyperspectral imaging (HSI) combined with machine learning for the nondestructive detection of CAP and α-SOH in hotpot seasoning.

View Article and Find Full Text PDF

Background: In clinical practices, doctors usually need to synthesize several single-modality medical images for diagnosis, which is a time-consuming and costly process. With this background, multimodal medical image fusion (MMIF) techniques have emerged to synthesize medical images of different modalities, providing a comprehensive and objective interpretation of the lesion.

Purpose: Although existing MMIF approaches have shown promising results, they often overlook the importance of multiscale feature diversity and attention interaction, which are essential for superior visual outcomes.

View Article and Find Full Text PDF

Objective: Pharmacoresistant tremors, often seen in Parkinson disease and essential tremor, significantly impair patient quality of life. Although deep brain stimulation has been effective, its invasive nature limits its applicability. MR-guided focused ultrasound (MRgFUS) thalamotomy offers a noninvasive alternative, but its cognitive impacts are not fully understood.

View Article and Find Full Text PDF

Background And Hypothesis: Cognitive impairments are particularly disabling for patients with a psychotic disorder and often persist despite optimization of antipsychotic treatment. Thus, motivating an extension of the research focus on the endocannabinoid system. The aim of this study was to evaluate group differences in brain fatty acid amid hydrolase (FAAH), an endocannabinoid enzyme between first-episode psychosis (FEP), individuals with clinical high risk (CHR) for psychosis and healthy controls (HCs).

View Article and Find Full Text PDF

Background: Almost everywhere, neonatal mortality can be decreased with ease if competent obstetricians give the necessary treatment. Unfortunately, observational techniques were not used to examine basic essential newborn care practice among obstetric care providers in Ethiopia. Thus, the purpose of this study was to evaluate factors related to essential newborn care practice using observational techniques among obstetric care providers in public hospitals in the Gamo, Gofa, and Wolayta zones, southern Ethiopia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!