COVID-19 is imposing massive health, social and economic costs. While many developed countries have started vaccinating, most African nations are waiting for vaccine stocks to be allocated and are using clinical public health (CPH) strategies to control the pandemic. The emergence of variants of concern (VOC), unequal access to the vaccine supply and locally specific logistical and vaccine delivery parameters, add complexity to national CPH strategies and amplify the urgent need for effective CPH policies. Big data and artificial intelligence machine learning techniques and collaborations can be instrumental in an accurate, timely, locally nuanced analysis of multiple data sources to inform CPH decision-making, vaccination strategies and their staged roll-out. The Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC) has been established to develop and employ machine learning techniques to design CPH strategies in Africa, which requires ongoing collaboration, testing and development to maximize the equity and effectiveness of COVID-19-related CPH interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345600 | PMC |
http://dx.doi.org/10.3390/ijerph18157890 | DOI Listing |
JMIR Res Protoc
January 2025
School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Burwood, Australia.
Background: Heart failure (HF) is a chronic, progressive condition where the heart cannot pump enough blood to meet the body's needs. In addition to the daily challenges that HF poses, acute exacerbations can lead to costly hospitalizations and increased mortality. High health care costs and the burden of HF have led to the emerging application of new technologies to support people living with HF to stay well while living in the community.
View Article and Find Full Text PDFJMIR Cancer
January 2025
Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom.
Background: Skin cancers, including melanoma and keratinocyte cancers, are among the most common cancers worldwide, and their incidence is rising in most populations. Earlier detection of skin cancer leads to better outcomes for patients. Artificial intelligence (AI) technologies have been applied to skin cancer diagnosis, but many technologies lack clinical evidence and/or the appropriate regulatory approvals.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom.
Background: The literature is equivocal as to whether the predicted negative mental health impact of the COVID-19 pandemic came to fruition. Some quantitative studies report increased emotional problems and depression; others report improved mental health and well-being. Qualitative explorations reveal heterogeneity, with themes ranging from feelings of loss to growth and development.
View Article and Find Full Text PDFInteract J Med Res
January 2025
Medical Directorate, Lausanne University Hospital, Lausanne, Switzerland.
Large language models (LLMs) are artificial intelligence tools that have the prospect of profoundly changing how we practice all aspects of medicine. Considering the incredible potential of LLMs in medicine and the interest of many health care stakeholders for implementation into routine practice, it is therefore essential that clinicians be aware of the basic risks associated with the use of these models. Namely, a significant risk associated with the use of LLMs is their potential to create hallucinations.
View Article and Find Full Text PDFJMIR Med Inform
January 2025
Institute of History and Ethics in Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany.
Background: In data-sparse areas such as health care, computer scientists aim to leverage as much available information as possible to increase the accuracy of their machine learning models' outputs. As a standard, categorical data, such as patients' gender, socioeconomic status, or skin color, are used to train models in fusion with other data types, such as medical images and text-based medical information. However, the effects of including categorical data features for model training in such data-scarce areas are underexamined, particularly regarding models intended to serve individuals equitably in a diverse population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!