Are Biobased Plastics Green Alternatives?-A Critical Review.

Int J Environ Res Public Health

Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.

Published: July 2021

Environmental sustainability is driving an intense search for "green materials". Biobased plastics have emerged as a promising alternative. Their building blocks can now be obtained from diverse biomass, by-products, and organic residues due to the advances in biorefineries and bioprocessing technologies, decreasing the demand for fossil fuel resources and carbon footprint. Novel biobased polymers with high added value and improved properties and functionalities have been developed to apply diverse economic sectors. However, the real opportunities and risks of such novel biobased plastic solutions have raised scientific and public awareness. This paper provides a critical review on the recent advances in biobased polymers chemistry and emerging (bio)technologies that underpin their production and discusses the potential for biodegradation, recycling, environmental safety, and toxicity of these biobased solutions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345407PMC
http://dx.doi.org/10.3390/ijerph18157729DOI Listing

Publication Analysis

Top Keywords

biobased plastics
8
critical review
8
novel biobased
8
biobased polymers
8
biobased
6
plastics green
4
green alternatives?-a
4
alternatives?-a critical
4
review environmental
4
environmental sustainability
4

Similar Publications

The growing pursuit of carbon circularity in material fabrication has led to the increased use of recycled and biobased resources, especially in epoxy resin systems. Fossil-based bisphenols are being replaced with recycled bisphenol A (r-BPA) and lignin derivatives, both derived from previous processes. In this study, r-BPA was chemically recycled from end-of-life televisions, then converted into r-DGEBA and r-DAGBA through glycidylation and acrylic acid ring-opening.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research highlights the potential of polyhydroxyalkanoates (PHAs), especially poly(3-hydroxybutyrate) (P3HB), for creating fine fiber nonwoven structures, with fiber diameters ranging from 2.5 µm to 20 µm through the meltblow process.
  • The study identifies limitations in existing PHA fabrics, such as brittleness and low flexibility, but shows how advancements in their processing can lead to stable three-dimensional nonwoven parts.
  • It also reveals that the PHA copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) demonstrates improved elongation properties and resilience compared to P3HB, especially
View Article and Find Full Text PDF

Unveiling the enzymatic pathway of UMG-SP2 urethanase: insights into polyurethane degradation at the atomic level.

Chem Sci

December 2024

LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal

The recently discovered metagenomic urethanases UMG-SP1, UMG-SP2, and UMG-SP3 have emerged as promising tools to establish a bio-based recycling approach for polyurethane (PU) waste. These enzymes are capable of hydrolyzing urethane bonds in low molecular weight dicarbamates as well as in thermoplastic PU and the amide bond in polyamide employing a Ser-Ser -Lys triad for catalysis, similar to members of the amidase signature protein superfamily. Understanding the catalytic mechanism of these urethanases is crucial for enhancing their enzymatic activity and improving PU bio-recycling processes.

View Article and Find Full Text PDF

In this study, the response surface methodology was first utilized to optimize the enzyme treatment conditions as reaction pH, temperature, time and enzyme dosage of 9.5, 45 °C, 94.5 min and 100 U/L.

View Article and Find Full Text PDF

The escalating environmental impact of non-biodegradable plastic waste has intensified global efforts to seek sustainable alternatives, with biodegradable polymers from renewable sources emerging as a promising solution. This manuscript provides the current perspectives, challenges, and opportunities within the field of sustainable and biodegradable packaging. Despite a significant market presence of conventional non-biodegradable petrochemical-based plastics, there is a growing trend towards the adoption of bio-based polymers from renewable resources driven by environmental sustainability and regulatory measures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!