Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. GBM-expansion depends on a dense vascular network and, coherently, GBMs are highly angiogenic. However, new intratumoral blood vessels are often aberrant with consequences for blood-flow and vascular barrier function. Hence, the delivery of chemotherapeutics into GBM can be compromised. Furthermore, leaky vessels support edema-formation, which can result in severe neurological deficits. The secreted signaling peptide Apelin (APLN) plays an important role in the formation of GBM blood vessels. Both APLN and the Apelin receptor (APLNR) are upregulated in GBM cells and control tumor cell invasiveness. Here we summarize the current evidence on the role of APLN/APLNR signaling during brain tumor pathology. We show that targeting APLN/APLNR can induce anti-angiogenic effects in GBM and simultaneously blunt GBM cell infiltration. In addition, we discuss how manipulation of APLN/APLNR signaling in GBM leads to the normalization of tumor vessels and thereby supports chemotherapy, reduces edema, and improves anti-tumorigenic immune reactions. Hence, therapeutic targeting of APLN/APLNR signaling offers an interesting option to address different pathological hallmarks of GBM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345670 | PMC |
http://dx.doi.org/10.3390/cancers13153899 | DOI Listing |
Oxid Med Cell Longev
October 2022
Institute of Molecular Medicine, Department of Preventive Medicine, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Academy for Advanced Interdisciplinary Studies, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
Apelin (APLN) is an endogenous ligand of the G protein-coupled receptor APJ (APLNR). APLN/APLNR system was involved in a variety of pathological and physiological functions, such as tumorigenesis and development. However, its prognostic roles in patients with central nervous system (CNS) cancers remain unknown.
View Article and Find Full Text PDFJ Appl Physiol (1985)
September 2022
Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois.
Skeletal muscle aging is a multidimensional pathology of atrophy, reduced strength, and oxidative damage. Although some molecular targets may mediate both hypertrophic and oxidative adaptations in muscle, their responsiveness in humans and relationship with functional outcomes like strength remain unclear. Promising therapeutic targets to combat muscle aging like apelin, vitamin D receptor (VDR), and spermine oxidase (SMOX) have been investigated in preclinical models but the adaptive response in humans is not well defined.
View Article and Find Full Text PDFCancers (Basel)
August 2021
Walter Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany.
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. GBM-expansion depends on a dense vascular network and, coherently, GBMs are highly angiogenic. However, new intratumoral blood vessels are often aberrant with consequences for blood-flow and vascular barrier function.
View Article and Find Full Text PDFJ Cell Biol
September 2021
Centre de Recherche en Cancérologie et Immunologie Nantes Angers, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Nantes, Université d'Angers, Nantes, France.
Glioblastoma is one of the most lethal forms of adult cancer, with a median survival of ∼15 mo. Targeting glioblastoma stem-like cells (GSCs) at the origin of tumor formation and relapse may prove beneficial. In situ, GSCs are nested within the vascular bed in tight interaction with brain endothelial cells, which positively control their expansion.
View Article and Find Full Text PDFFront Genet
August 2020
Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.
The Apelin (APLN)/apelin receptor (APLNR) signaling pathway is a newly identified regulator in various cardiovascular diseases, which is considered as a candidate pathway for the occurrence of coronary heart disease (CHD), depression, and anxiety. The goal of this study was to investigate the association between APLN/APLNR gene polymorphisms and the risk of depression and anxiety in CHD patients. To this end, a case-control study involving 269 CHD patients and 184 healthy control individuals was conducted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!