AI Article Synopsis

Article Abstract

Biomarkers identify patient response to therapy. The potential immune-checkpoint biomarker, Inducible T-cell COStimulator (ICOS), expressed on regulating T-cell activation and involved in adaptive immune responses, is of great interest. We have previously shown that open-source software for digital pathology image analysis can be used to detect and quantify ICOS using cell detection algorithms based on traditional image processing techniques. Currently, artificial intelligence (AI) based on deep learning methods is significantly impacting the domain of digital pathology, including the quantification of biomarkers. In this study, we propose a general AI-based workflow for applying deep learning to the problem of cell segmentation/detection in IHC slides as a basis for quantifying nuclear staining biomarkers, such as ICOS. It consists of two main parts: a simplified but robust annotation process, and cell segmentation/detection models. This results in an optimised annotation process with a new user-friendly tool that can interact with1 other open-source software and assists pathologists and scientists in creating and exporting data for deep learning. We present a set of architectures for cell-based segmentation/detection to quantify and analyse the trade-offs between them, proving to be more accurate and less time consuming than traditional methods. This approach can identify the best tool to deliver the prognostic significance of ICOS protein expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345140PMC
http://dx.doi.org/10.3390/cancers13153825DOI Listing

Publication Analysis

Top Keywords

deep learning
12
icos protein
8
protein expression
8
open-source software
8
digital pathology
8
cell segmentation/detection
8
annotation process
8
icos
5
assessing deep
4
deep learning-based
4

Similar Publications

Cognitive Radio (CR) technology enables wireless devices to learn about their surrounding spectrum environment through sensing capabilities, thereby facilitating efficient spectrum utilization without interfering with the normal operation of licensed users. This study aims to enhance spectrum sensing in multi-user cooperative cognitive radio systems by leveraging a hybrid model that combines Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. A novel multi-user cooperative spectrum sensing model is developed, utilizing CNN's local feature extraction capability and LSTM's advantage in handling sequential data to optimize sensing accuracy and efficiency.

View Article and Find Full Text PDF

Accurate energy demand forecasting is critical for efficient energy management and planning. Recent advancements in computing power and the availability of large datasets have fueled the development of machine learning models. However, selecting the most appropriate features to enhance prediction accuracy and robustness remains a key challenge.

View Article and Find Full Text PDF

Dynamics and triggers of misinformation on vaccines.

PLoS One

January 2025

Centro Ricerche Enrico Fermi, Rome, Italy.

The Covid-19 pandemic has sparked renewed attention to the risks of online misinformation, emphasizing its impact on individuals' quality of life through the spread of health-related myths and misconceptions. In this study, we analyze 6 years (2016-2021) of Italian vaccine debate across diverse social media platforms (Facebook, Instagram, Twitter, YouTube), encompassing all major news sources-both questionable and reliable. We first use the symbolic transfer entropy analysis of news production time-series to dynamically determine which category of sources, questionable or reliable, causally drives the agenda on vaccines.

View Article and Find Full Text PDF

A framework for assessing reliability of observer annotations of aerial wildlife imagery, with insights for deep learning applications.

PLoS One

January 2025

Division of Biological Sciences, US Fish and Wildlife Southwest Regional Office, Albuquerque, New Mexico, United States of America.

There is growing interest in using deep learning models to automate wildlife detection in aerial imaging surveys to increase efficiency, but human-generated annotations remain necessary for model training. However, even skilled observers may diverge in interpreting aerial imagery of complex environments, which may result in downstream instability of models. In this study, we present a framework for assessing annotation reliability by calculating agreement metrics for individual observers against an aggregated set of annotations generated by clustering multiple observers' observations and selecting the mode classification.

View Article and Find Full Text PDF

Personalized recommendation system to handle skin cancer at early stage based on hybrid model.

Network

January 2025

Computer Science and Engineering, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, India.

Skin cancer is one of the most prevalent and harmful forms of cancer, with early detection being crucial for successful treatment outcomes. However, current skin cancer detection methods often suffer from limitations such as reliance on manual inspection by clinicians, inconsistency in diagnostic accuracy, and a lack of personalized recommendations based on patient-specific data. In our work, we presented a Personalized Recommendation System to handle Skin Cancer at an early stage based on Hybrid Model (PRSSCHM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!