Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is one of the most widely applied forms of adoptive immunotherapy for the treatment of hematological malignancies. Detrimental graft-versus-host disease (GVHD), but also beneficial graft-versus-leukemia (GVL) effects occurring after allo-HSCT are largely mediated by alloantigen-reactive donor T cells in the graft. Separating GVHD from GVL effects is a formidable challenge, and a greater understanding of donor T cell biology is required to accomplish the uncoupling of GVHD from GVL. Here, we evaluated the role of β-catenin in this process. Using a unique mouse model of transgenic overexpression of human β-catenin () in an allo-HSCT model, we show here that T cells from mice did not cause GVHD, and surprisingly, T cells maintained the GVL effect. Donor T cells from mice exhibited significantly lower inflammatory cytokine production and reduced donor T cell proliferation, while upregulating cytotoxic mediators that resulted in enhanced cytotoxicity. RNA sequencing revealed changes in the expression of 1169 genes for CD4, and 1006 genes for CD8 T cells involved in essential aspects of immune response and GVHD pathophysiology. Altogether, our data suggest that β-catenin is a druggable target for developing therapeutic strategies to reduce GVHD while preserving the beneficial GVL effects following allo-HSCT treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345079PMC
http://dx.doi.org/10.3390/cancers13153798DOI Listing

Publication Analysis

Top Keywords

gvl effects
12
donor cells
8
gvhd gvl
8
donor cell
8
cells mice
8
gvhd
6
gvl
5
cells
5
human wnt/β-catenin
4
wnt/β-catenin regulates
4

Similar Publications

The Innate Lymphoid Cells (ILCs) are a family of innate immune cells composed by the Natural Killer (NK) cells and the helper ILCs (hILCs) (ILC1, ILC2, ILC3), both developing from a common ILC precursor (ILCP) derived from hematopoietic stem cells (HSCs). A correct ILC reconstitution is crucial, particularly in patients receiving HSC transplantation (HSCT), the only therapeutic option for many adult and pediatric high-risk hematological malignancies. Indeed, mainly thanks to their cytotoxic activity, NK cells have a strong Graft-versus-Leukemia (GvL) effect.

View Article and Find Full Text PDF

Adoptive cell therapy (ACT) using natural killer (NK) cells has emerged as a promising therapeutic strategy for acute myeloid leukemia (AML), addressing challenges such as chemotherapy resistance and high relapse rates. Over the years, clinical trials and studies have explored various sources of NK cells, including ex vivo expanded NK cell lines, CAR-NK cells, peripheral blood-derived NK cells, and umbilical cord blood-derived NK cells. These therapies have demonstrated varying degrees of therapeutic efficacy, ranging from transient anti-leukemia activity to sustained remission in select patient groups.

View Article and Find Full Text PDF

Background: Chronic graft-versus-host disease (cGVHD) manifests with characteristics of autoimmune disease with organs attacked by pathogenic helper T cells. Recent studies have highlighted the role of T cells in cGVHD pathogenesis. Due to limited understanding of underlying mechanisms, preventing cGVHD after allogenic hematopoietic cell transplantation (HCT) has become a major challenge.

View Article and Find Full Text PDF

Neoadjuvant immunotherapies have shown antitumor activity in melanoma. Substudy 02C of the global, rolling-arm, phase 1/2, adaptive-design KEYMAKER-U02 trial is evaluating neoadjuvant pembrolizumab (anti-PD-1) alone or in combination, followed by adjuvant pembrolizumab, for stage IIIB-D melanoma. Here we report results from the first three arms: pembrolizumab plus vibostolimab (anti-TIGIT), pembrolizumab plus gebasaxturev (coxsackievirus A21) and pembrolizumab monotherapy.

View Article and Find Full Text PDF

Despite advancements in mechanical circulatory support (MCS) technology, persistent critical complications related to blood contact remain unresolved. To provide a safer alternative therapy, CorInnova is developing a non-blood contacting direct cardiac compression (DCC) device for MCS. To support product development toward clinical trials, a simulation platform has been developed to predict clinical outcomes under patient-specific conditions, guiding patient selection for clinical trials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!