It is well established that the endocrine system plays a pivotal role in preparing the avian embryos for the abrupt switch from chorioallantoic to pulmonary respiration during the critical embryo-to-hatchling transition. However, as the master gland of the endocrine system, there has been little research focusing on the molecular mechanisms controlling the development and function of the pituitary gland during the peri-hatch period in birds. In the present study, we aimed to determine the genome-wide mRNA and miRNA transcriptome profiles of the pituitary during the embryo-to-hatchling transition period from embryonic day 22 (E22) to post-hatching day 6 (P6) in the goose (Anser cygnoides). Of note, expression of Anser_cygnoides_newGene_32456 and LOC106031011 were significantly different among these 4 stages (i.e., E22, E26, P2, and P6). Meanwhile, the neuroactive ligand-receptor interaction pathway was significantly enriched by the DEGs commonly identified among three pairwise comparisons. At the miRNA transcriptome level, there were not commonly identified DE miRNAs among these 4 stages, while the 418 of their predicted target genes were mutually shared. Both the target genes of DE miRNAs in each comparison and these 418 shared target genes were significantly enriched in the ECM-receptor interaction and focal adhesion pathways. In the predicted miRNA-mRNA interaction networks of these 2 pathways, novel_miRNA_467, novel_miRNA_154, and novel_miRNA_340 were the hub miRNAs. In addition, multiple DE miRNAs also showed predicted target relationships with the DEGs associated with extracellular matrix (ECM) components. Among them, expression of novel_miR_120, tgu-miR-92-3p, and novel_miR_398 was significantly negatively correlated with that of LAMC3 (laminin subunit gamma3), suggesting that these miRNAs may regulate pituitary tissue remodeling and functional changes through targeting LAMC3 during development. These identified DE mRNAs and miRNAs as well as their predicted interaction networks involved in regulation of tissue remodeling and cellular functions were most likely to play critical roles in facilitating the embryo-to-hatchling transition. These results provide novel insights into the early developmental process of avian pituitary gland and will help better understand the underlying molecular mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8350522 | PMC |
http://dx.doi.org/10.1016/j.psj.2021.101380 | DOI Listing |
BMC Genomics
December 2024
Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, 7610001, Rehovot, Israel.
Background: Chicken embryos emerge from their shell by the piercing movement of the hatching muscle. Although considered a key player during hatching, with activity that imposes a substantial metabolic demand, data are still limited. The study provides a bioenergetic and transcriptomic analyses during the pre-post-hatching period.
View Article and Find Full Text PDFBMC Genomics
April 2024
Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
Background: The popularity of Muscovy ducks is attributed not only to their conformation traits but also to their slightly higher content of breast and leg meat, as well as their stronger-tasting meat compared to that of typical domestic ducks. However, there is a lack of comprehensive systematic research on the development of breast muscle in Muscovy ducks. In addition, since the number of skeletal muscle myofibers is established during the embryonic period, this study conducted a full-length transcriptome sequencing and microRNA sequencing of the breast muscle.
View Article and Find Full Text PDFPoult Sci
September 2021
Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
It is well established that the endocrine system plays a pivotal role in preparing the avian embryos for the abrupt switch from chorioallantoic to pulmonary respiration during the critical embryo-to-hatchling transition. However, as the master gland of the endocrine system, there has been little research focusing on the molecular mechanisms controlling the development and function of the pituitary gland during the peri-hatch period in birds. In the present study, we aimed to determine the genome-wide mRNA and miRNA transcriptome profiles of the pituitary during the embryo-to-hatchling transition period from embryonic day 22 (E22) to post-hatching day 6 (P6) in the goose (Anser cygnoides).
View Article and Find Full Text PDFBMC Genomics
September 2018
Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
Background: Although hatching is perhaps the most abrupt and profound metabolic challenge that a chicken must undergo; there have been no attempts to functionally map the metabolic pathways induced in liver during the embryo-to-hatchling transition. Furthermore, we know very little about the metabolic and regulatory factors that regulate lipid metabolism in late embryos or newly-hatched chicks. In the present study, we examined hepatic transcriptomes of 12 embryos and 12 hatchling chicks during the peri-hatch period-or the metabolic switch from chorioallantoic to pulmonary respiration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!