Antibiotic resistant bacteria pose an increasing threat to global public health, and it is essential that effective detection methods for identifying these organisms. This study assesses the ability of three different analytical approaches that were developed using surface-enhanced Raman spectroscopy (SERS) to differentiate between antibiotic sensitive and resistant bacteria based on their responses to ampicillin exposure, using Escherichia coli O157:H7 as a model bacterium. The approaches tested in this study included a conventional SERS approach of mixing a droplet of bacterial culture with gold nanoparticles, extracellular matrix analysis, and in situ mapping of bacterial cells on a filter membrane. All three of the SERS techniques were able to differentiate between the sensitive and resistant bacterial strains based on peak intensity changes associated with compounds released by the bacteria in response to antibiotic exposure, with extracellular matrix analysis and filter mapping both observed to be more effective than the conventional approach. However, there were significant differences between the spectra obtained from the different techniques and the potential advantages and disadvantages of each approach should be considered when used in the future. This study shows that SERS can be an effective technique for rapid and efficient assessment of ampicillin sensitivity in E. coli, and more work should be done to explore these analytical approaches with other types of bacterial samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2021.120239 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!