Recent advances in bio-interface technologies establish a rich range of electronic, optoelectronic, thermal, and chemical options for probing and modulating the behaviors of small-scale three dimensional (3D) biological constructs (e.g. organoids, spheroids, and assembloids). These approaches represent qualitative advances over traditional alternatives due to their ability to extend broadly into volumetric spaces and/or to wrap tightly curved surfaces of natural or artificial tissues. Thin deformable sheets, filamentary penetrating pins, open mesh structures and 3D interconnected networks represent some of the most effective design strategies in this emerging field of bioelectronics. This review focuses on recent developments, with an emphasis on multimodal interfaces in the form of tissue-embedding scaffolds and tissue-surrounding frameworks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.copbio.2021.07.023 | DOI Listing |
Anal Chem
January 2025
Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970 Araras, São Paulo, Brazil.
A few decades ago, the technological boom revolutionized access to information, ushering in a new era of research possibilities. Electrochemical devices have recently emerged as a key scientific advancement utilizing electrochemistry principles to detect various chemical species. These versatile electrodes find applications in diverse fields, such as healthcare diagnostics and environmental monitoring.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Soft-matter and Advanced Functional Materials, Gansu Province Carbon New Material Industry Technology Center, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
Hexagonal boron nitride (h-BN), with excellent thermal conductivity and insulation capability, has garnered significant attention in the field of electronic thermal management. However, the thermal conductivity of the h-BN-enhanced polymer composite material is far from that expected because of the insurmountable interfacial thermal resistance. In order to realize the high thermal conductivity of polymer composite thermal interface materials, herein, an in situ exfoliation method has been employed to prepare a boron nitride nanosheet-graphene (BNNS-Gr) hybrid filler.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
Aerogels are regarded as the next generation of thermal insulators; however, conventional aerogels suffer from issues such as brittleness, low moisture resistance, and a complex production process. Subnanowires (SNWs) are emerging materials known for their exceptional flexibility, toughness, intrinsic hydrophobicity, and gelling capabilities, making them ideal building blocks for flexible, tough, hydrophobic, and thermally insulating aerogels. Herein, we present a simple and scalable strategy to construct SNW aerogels by freeze-drying hydroxyapatite (HAP) SNW dispersions in cyclohexane.
View Article and Find Full Text PDFBiomed Res Int
January 2025
Center for Personalized Nanomedicine, Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia.
Environmental pollution has been a significant concern for the last few years. The leather industry significantly contributes to the economy but is one of Bangladesh's most prominent polluting industries. It is also responsible for several severe diseases such as cancer, lung diseases, and heart diseases of leather workers because they use bleaching agents and chemicals, and these have numerous adverse effects on human health.
View Article and Find Full Text PDFCrit Care Explor
January 2025
Department of Mathematics and School of Biomedical Engineering, Colorado State University, Fort Collins, CO.
The purpose of this work is to evaluate the feasibility of lung imaging using 3D electrical impedance tomography (EIT) during spontaneous breathing trials (SBTs) in patients with acute hypoxic respiratory failure. EIT is a noninvasive, nonionizing, real-time functional imaging technique, suitable for bedside monitoring in critically ill patients. EIT data were collected in 24 mechanically ventilated patients immediately preceding and during a SBT on two rows of 16 electrodes using a simultaneous multicurrent source EIT system for 3D imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!