Calreticulin (CALR) is a highly conserved multifunctional chaperone protein primarily present in the endoplasmic reticulum, where it regulates Ca homeostasis. Recently, CALR has gained special interest for its diverse functions outside the endoplasmic reticulum, including the cell surface and extracellular space. Although high-resolution structures of CALR exist, it has not yet been established how different regions and individual amino acid residues contribute to structural stability of the protein. In the present study, we have identified key residues determining the structural stability of CALR. We used a Saccharomyces cerevisiae expression system to express and purify 50 human CALR mutants, which were analysed for several parameters including secretion titer, melting temperature (T), stability and oligomeric state. Our results revealed the importance of a previously identified small patch of conserved surface residues, amino acids 166-187 ("cluster 2") for structural stability of the human CALR protein. Two residues, Tyr172 and Asp187, were critical for maintaining the native structure of the protein. Mutant D187A revealed a severe drop in secretion titer, it was thermally unstable, prone to degradation, and oligomer formation. Tyr172 was critical for thermal stability of CALR and interacted with the third free Cys163 residue. This illustrates an unusual thermal stability of CALR dominated by Asp187, Tyr172 and Cys163, which may interact as part of a conserved structural unit. Besides structural clusters, we found a correlation of some measured parameter values in groups of CALR mutants that cause myeloproliferative neoplasms (MPN) and in mutants that may be associated with sudden unexpected death (SUD).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbapap.2021.140710 | DOI Listing |
Nanomedicine (Lond)
January 2025
Department of Chemistry, The University of Jordan, Amman, Jordan.
Aims: We develop and evaluate copper-based metal-organic frameworks (Cu-MOFs) incorporating cromolyn as a linker to enhance structural stability, drug delivery efficiency, and therapeutic potential, particularly for breast cancer treatment.
Materials & Methods: Two Cu-MOF formulations were synthesized: Cu-MOFs-BDC-DOX (using terephthalic acid) and Cu-MOFs-CROMO-DOX (using cromolyn as a linker). Characterization was performed using SEM/TEM for morphology, and FTIR, XRD, and TGA to confirm structural integrity.
Inorg Chem
January 2025
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.
Chiral organic-inorganic metal halide (OIMH) materials are gaining increasing attention as candidates for asymmetric materials due to their unique photoelectric, chiral optic, and spintronic properties. The introduction of chirality into OIMHs is usually achieved by the use of chiral organic cations, while previous studies often focus on primary ammonium cations derived from commercially available chiral amines, limiting the tunability of the OIMH materials. Herein, we report the use of Zincke reactions to synthesize chiral N-substituted pyridinium salts, namely, (R)/(S)-methylbenzylpyridinium (/-MBnP) chloride and the corresponding 1D chiral OIMHs, (/-MBnP)PbX3 (X = Cl, Br, and I).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
Various glassy hydrogels are developed by forming dense physical associations within the matrices, which exhibit forced elastic deformation and possess high stiffness, strength, and toughness. Here, the viscoplastic behaviors of the glassy hydrogel of poly(methacrylamide--methacrylic acid) are investigated by stress relaxation and creep measurements. We found that the characteristic time of stress relaxation of the glassy gel is much smaller than that of amorphous polymers.
View Article and Find Full Text PDFNanomicro Lett
January 2025
Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
In an era where technological advancement and sustainability converge, developing renewable materials with multifunctional integration is increasingly in demand. This study filled a crucial gap by integrating energy storage, multi-band electromagnetic interference (EMI) shielding, and structural design into bio-based materials. Specifically, conductive polymer layers were formed within the 2,2,6,6-tetramethylpiperidine-1-oxide (TEMPO)-oxidized cellulose fiber skeleton, where a mild TEMPO-mediated oxidation system was applied to endow it with abundant macropores that could be utilized as active sites (specific surface area of 105.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Food4You Research Group, Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
The Amazon region holds untapped potential with its starch-rich tubers, which are not yet industrialized and face a risk of extinction due to competition from widely cultivated crops. Beyond their traditional subsistence use, Amazonian tubers such as Mairá and Ariá can be utilized as starch sources, offering an opportunity to support regional agriculture, preserve indigenous heritage, and provide sustainable income streams. This study aimed to characterize starches extracted from Mairá (MPS) and Ariá (ARS for rhizome and APS for potato), focusing on their technological and functional potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!