Sex-based eRNA expression and function in ischemic stroke.

Neurochem Int

Laboratory for Stroke Research and Noncoding RNA Biology, JFK Neuroscience Institute, HackensackMeridian Health JFK University Medical Center, Edison, NJ, 08820, USA; Department of Neurology, Hackensack Meridian School of Medicine, Nutley, NJ, 07110, USA. Electronic address:

Published: November 2021

Enhancer-derived RNAs (eRNAs) are a new class of long noncoding RNA that have roles in modulating enhancer-mediated gene transcription, which ultimately influences phenotypic outcomes. We recently published the first study mapping genome-wide eRNA expression in the male mouse cortex during ischemic stroke and identified 77 eRNAs that were significantly altered following a 1 h middle cerebral artery occlusion (MCAO) and 6 h of reperfusion, as compared to sham controls. Knockdown of one such stroke-induced eRNA - eRNA_06347 - resulted in significantly larger infarcts, demonstrating a role for eRNA_06347 in modulating the post-stroke pathophysiology in males. In the current study, we applied quantitative real-time PCR to evaluate whether the 77 eRNAs identified in the male cortex also show altered expression in the post-stroke female cortex. Using age-matched and time-matched female mice, we found that only a subset of the 77 eRNAs were detected in the post-stroke female cortex. Of these, only a small fraction showed similar temporal expression characteristics as males, including eRNA_06347 which was highly induced in both sexes. Knockdown of eRNA_06347 in the female cortex resulted in significantly increased infarct volumes that were closely matched to those in males, indicating that eRNA_06347 modulates the post-stroke pathophysiology similarly in males and females. This suggests a common underlying role for eRNA_06347 in the two sexes. Overall, this is the first study to evaluate eRNA expression and perturbation in the female cortex during stroke, and present a comparative analysis between males and females. Our findings show that eRNAs have sex-dependent and sex-independent expression patterns that may be of significance to the pathophysiological responses to stroke in the two sexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511075PMC
http://dx.doi.org/10.1016/j.neuint.2021.105149DOI Listing

Publication Analysis

Top Keywords

female cortex
16
erna expression
12
ischemic stroke
8
role erna_06347
8
post-stroke pathophysiology
8
pathophysiology males
8
post-stroke female
8
males females
8
expression
6
cortex
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!