Enhancer-derived RNAs (eRNAs) are a new class of long noncoding RNA that have roles in modulating enhancer-mediated gene transcription, which ultimately influences phenotypic outcomes. We recently published the first study mapping genome-wide eRNA expression in the male mouse cortex during ischemic stroke and identified 77 eRNAs that were significantly altered following a 1 h middle cerebral artery occlusion (MCAO) and 6 h of reperfusion, as compared to sham controls. Knockdown of one such stroke-induced eRNA - eRNA_06347 - resulted in significantly larger infarcts, demonstrating a role for eRNA_06347 in modulating the post-stroke pathophysiology in males. In the current study, we applied quantitative real-time PCR to evaluate whether the 77 eRNAs identified in the male cortex also show altered expression in the post-stroke female cortex. Using age-matched and time-matched female mice, we found that only a subset of the 77 eRNAs were detected in the post-stroke female cortex. Of these, only a small fraction showed similar temporal expression characteristics as males, including eRNA_06347 which was highly induced in both sexes. Knockdown of eRNA_06347 in the female cortex resulted in significantly increased infarct volumes that were closely matched to those in males, indicating that eRNA_06347 modulates the post-stroke pathophysiology similarly in males and females. This suggests a common underlying role for eRNA_06347 in the two sexes. Overall, this is the first study to evaluate eRNA expression and perturbation in the female cortex during stroke, and present a comparative analysis between males and females. Our findings show that eRNAs have sex-dependent and sex-independent expression patterns that may be of significance to the pathophysiological responses to stroke in the two sexes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511075 | PMC |
http://dx.doi.org/10.1016/j.neuint.2021.105149 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!