Structural insights into the mechanism of pH-selective substrate specificity of the polysaccharide lyase Smlt1473.

J Biol Chem

School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha, India; Homi Bhabha National Institute, Mumbai, Maharashtra, India. Electronic address:

Published: October 2021

Polysaccharide lyases (PLs) are a broad class of microbial enzymes that degrade anionic polysaccharides. Equally broad diversity in their polysaccharide substrates has attracted interest in biotechnological applications such as biomass conversion to value-added chemicals and microbial biofilm removal. Unlike other PLs, Smlt1473 present in the clinically relevant Stenotrophomonas maltophilia strain K279a demonstrates a wide range of pH-dependent substrate specificities toward multiple, diverse polysaccharides: hyaluronic acid (pH 5.0), poly-β-D-glucuronic (celluronic) acid (pH 7.0), poly-β-D-mannuronic acid, and poly-α-L-guluronate (pH 9.0). To decode the pH-driven multiple substrate specificities and selectivity in this single enzyme, we present the X-ray structures of Smlt1473 determined at multiple pH values in apo and mannuronate-bound states as well as the tetra-hyaluronate-docked structure. Our results indicate that structural flexibility in the binding site and N-terminal loop coupled with specific substrate stereochemistry facilitates distinct modes of entry for substrates having diverse charge densities and chemical structures. Our structural analyses of wild-type apo structures solved at different pH values (5.0-9.0) and pH-trapped (5.0 and 7.0) catalytically relevant wild-type mannuronate complexes (1) indicate that pH modulates the catalytic microenvironment for guiding structurally and chemically diverse polysaccharide substrates, (2) further establish that molecular-level fluctuation in the enzyme catalytic tunnel is preconfigured, and (3) suggest that pH modulates fluctuations resulting in optimal substrate binding and cleavage. Furthermore, our results provide key insight into how strategies to reengineer both flexible loop and regions distal to the active site could be developed to target new and diverse substrates in a wide range of applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511899PMC
http://dx.doi.org/10.1016/j.jbc.2021.101014DOI Listing

Publication Analysis

Top Keywords

polysaccharide substrates
8
wide range
8
substrate specificities
8
substrate
5
structural insights
4
insights mechanism
4
mechanism ph-selective
4
ph-selective substrate
4
substrate specificity
4
polysaccharide
4

Similar Publications

In vegetative hyphae, chitin, β-1,3-glucan (laminarin), and a mixed β-1,3-/β-1,4-glucan (lichenin) are the major cell wall polysaccharides. GH72 enzymes have been shown to function as β-1,3-glucanases and glucanosyltransferases and can function in crosslinking β-1,3-glucans together. To characterize the enzymatic activities of the enzymes, we expressed GEL-1 with a HIS6 tag in A chimeric maltose binding protein:GEL-2 was produced in .

View Article and Find Full Text PDF

Fungi are well known for their ability to both produce and catabolize complex carbohydrates to acquire carbon, often in the most extreme of environments. Glucuronoxylomannan (GXM)-based gel matrices are widely produced by fungi in nature and though they are of key interest in medicine and pharmaceuticals, their biodegradation is poorly understood. Though some organisms, including other fungi, are adapted to life in and on GXM-like matrices in nature, they are almost entirely unstudied, and it is unknown if they are involved in matrix degradation.

View Article and Find Full Text PDF

Aiming toward a novel, noninvasive technique, with a real-time potential application in the monitoring of the complexation of steroidal neuromuscular blocker drugs Vecuronium () and Rocuronium () with sugammadex (, medication for the reversal of neuromuscular blockade induced by or in general anesthesia), we developed proof-of-principle methodology based on surface-enhanced Raman spectroscopy (SERS). Silver nanoparticles prepared by the reduction of silver ions with hydroxylamine hydrochloride were used as SERS-active substrates, additionally aggregated with calcium nitrate as needed. The and SERS spectra were obtained within the biorelevant 5 × 10-1 × 10 M range, as well as the SERS of , though the latter was observed only in the presence of the aggregating agent.

View Article and Find Full Text PDF

This study aims to provide evidence that when testing cellulose paper modified with copper particles (CuPs), the particle size and the analysis method influence the antimicrobial activity observed by this material. Commercial CuPs of nanometric size (2.7 nm, CuNPs) and micrometric size (2.

View Article and Find Full Text PDF

Suitable planting systems are critical for the physicochemical and bioactivities of strawberry ( Duch.) polysaccharides (SPs). In this study, SPs were prepared through hot water extraction, and the differences in physicochemical characteristics and bioactivities between SPs derived from elevated matrix soilless planting strawberries (EP-SP) and those from and conventional soil planting strawberries (GP-SP) were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!