Lung adenocarcinoma (LUAD) is a major health problem and has poor prognosis. Heterogeneity is a central determinant of the treatment outcome, requiring identification of new subclasses of LUAD. Senescence has emerged as a crucial regulator of metastasis and drug response. Ionizing radiation- and doxorubicin-induced senescence-associated genes in lung fibroblasts were used in K-means clustering to identify high- and low-senescence (HS and LS) classes among The Cancer Genome Atlas- LUAD (TCGA-LUAD) patients. The LS group showed significantly poorer survival (P = 0.01) and greater activation of proliferative signaling pathways, proliferation, wound healing, and genetic aberrations (P < 0.05). The TP53 mutation rate was significantly greater in the HS group (P < 0.0001), explaining the phenotype. Also, genome-wide hypomethylation was significantly greater in the LS group than in the HS group. Interestingly, pathway analysis identified silencing of Wnt signaling in the HS group. The machine learning-based recursive feature elimination technique was used to identify a 20-gene senescence signature in TCGA-LUAD samples. The presence of a senescence phenotype with poor survival was validated in an independent patient cohort and a cell-line cohort using unsupervised clustering of samples based on a 20-gene signature. On further analysis, HS cells were more resistant to drugs, particularly histone deacetylase inhibitors. Taken together, this study identified a novel subtype of LUAD with reduced Wnt signaling and high drug resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajpath.2021.07.005DOI Listing

Publication Analysis

Top Keywords

senescence phenotype
8
lung adenocarcinoma
8
high drug
8
greater group
8
wnt signaling
8
group
5
identification characterization
4
senescence
4
characterization senescence
4
phenotype lung
4

Similar Publications

Possible sarcopenia, sarcopenic obesity phenotypes and their association with diabetes: Evidence from LASI wave-1 (2017-18).

Diabetes Metab Syndr

January 2025

Department of Anthropology, University of Delhi, Delhi, 110007, India; Laboratory of Kinanthropometry, Ergonomics and Physiological Anthropology, Department of Anthropology, University of Delhi, Delhi, 110007, India. Electronic address:

Aims: To assess the prevalence of possible sarcopenia and sarcopenic obesity phenotypes and investigate their association with self-reported diabetes among community-dwelling individuals aged 45 or above.

Methods: Utilizing data from 62,899 individuals in LASI wave-1 (2017-18), the assessment of possible sarcopenia was done on two critical parameters: muscle (handgrip) strength and physical performance (gait speed), following the 2019 guidelines from the Asian working group on sarcopenia (AWGS). BMI, WC, WHR, and WHtR defined sarcopenic obesity phenotypes.

View Article and Find Full Text PDF

ECM Modifications Driven by Age and Metabolic Stress Directly Promote the Vascular Smooth Muscle Cell Osteogenic Processes.

Arterioscler Thromb Vasc Biol

January 2025

British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.).

Background: The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied.

Methods: Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype.

View Article and Find Full Text PDF

Declines in lysosomal acidification and function with aging are observed in organisms ranging from yeast to humans. V-ATPases play a central role in organelle acidification, and V-ATPase activity is regulated by reversible disassembly in many different settings. Using the yeast Saccharomyces cerevisiae as a replicative aging model, we demonstrate that V-ATPases disassemble into their V and V subcomplexes in aging cells, with release of V subunit C (Vma5) from the lysosome-like vacuole into the cytosol.

View Article and Find Full Text PDF

RPS23RG1 inhibits SORT1-mediated lysosomal degradation of MDGA2 to protect against autism.

Theranostics

January 2025

Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.

Mutations in the synaptic protein MAM domain containing glycosylphosphatidylinositol anchor 2 (MDGA2) have been associated with autism spectrum disorder (ASD). Therefore, elucidating the regulatory mechanisms of MDGA2 can help develop effective treatments for ASD. Liquid chromatography-tandem mass spectrometry was carried out to identify proteins interacting with the extracellular domain of RPS23RG1 and with MDGA2, followed by co-immunoprecipitation assays to confirm protein-protein interactions.

View Article and Find Full Text PDF

Lipid-mediated resolution of inflammation and survival in amyotrophic lateral sclerosis.

Brain Commun

January 2025

Neuromuscular Department, Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.

Neuroinflammation impacts on the progression of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. Specialized pro-resolving mediators trigger the resolution of inflammation. We investigate the specialized pro-resolving mediator blood profile and their receptors' expression in peripheral blood mononuclear cells in relation to survival in ALS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!