Background: Large-for-gestational-age fetuses are at increased risk of perinatal morbidity and mortality. Magnetic resonance imaging seems to be more accurate than ultrasound in the prediction of macrosomia; however, there is no well-powered study comparing magnetic resonance imaging with ultrasound in routine pregnancies.
Objective: This study aimed to prospectively compare estimates of fetal weight based on 2-dimensional ultrasound and magnetic resonance imaging with actual birthweights in routine pregnancies.
Study Design: From May 2016 to February 2019, women received counseling at the 36-week clinic. Written informed consent was obtained for this Ethics Committee-approved study. In this prospective, single-center, blinded study, pregnant women with singleton pregnancies between 36 0/7 and 36 6/7 weeks' gestation underwent both standard evaluation of estimated fetal weight with ultrasound according to Hadlock et al and magnetic resonance imaging according to the formula developed by Baker et al, based on the measurement of the fetal body volume. Participants and clinicians were aware of the results of the ultrasound but blinded to the magnetic resonance imaging estimates. Birthweight percentile was considered as the gold standard for the ultrasound and magnetic resonance imaging-derived percentiles. The primary outcome was the area under the receiver operating characteristic curve for the prediction of large-for-gestation-age neonates with birthweights of ≥95th percentile. Secondary outcomes included the comparative prediction of large-for-gestation-age neonates with birthweights of ≥90th, 97th, and 99th percentiles and small-for-gestational-age neonates with birthweights of ≤10th, 5th, and 3rd percentiles for gestational age and maternal and perinatal complications.
Results: Of 2914 women who were initially approached, results from 2378 were available for analysis. Total fetal body volume measurements were possible for all fetuses, and the time required to perform the planimetric measurements by magnetic resonance imaging was 3.0 minutes (range, 1.3-5.6). The area under the receiver operating characteristic curve for the prediction of a birthweight of ≥95th percentile was 0.985 using prenatal magnetic resonance imaging and 0.900 using ultrasound (difference=0.085, P<.001; standard error, 0.020). For a fixed false-positive rate of 5%, magnetic resonance imaging for the estimation of fetal weight detected 80.0% (71.1-87.2) of birthweight of ≥95th percentile, whereas ultrasound for the estimation of fetal weight detected 59.1% (49.0-68.5) of birthweight of ≥95th percentile. The positive predictive value was 42.6% (37.8-47.7) for the estimation of fetal weight using magnetic resonance imaging and 35.4% (30.1-41.1) for the estimation of fetal weight using ultrasound, and the negative predictive value was 99.0% (98.6-99.3) for the estimation of fetal weight using magnetic resonance imaging and 98.0% (97.6-98.4) for the estimation of fetal weight using ultrasound. For a fixed false-positive rate of 10%, magnetic resonance imaging for the estimation of fetal weight detected 92.4% (85.5-96.7) of birthweight of ≥95th percentile, whereas ultrasound for the estimation of fetal weight detected 76.2% (66.9-84.0) of birthweight of ≥95th percentile. The positive predictive value was 29.9% (27.2-32.8) for the estimation of fetal weight using magnetic resonance imaging and 26.2% (23.2-29.4) for the estimation of fetal weight using ultrasound, and the negative predictive value was 99.6 (99.2-99.8) for the estimation of fetal weight using magnetic resonance imaging and 98.8 (98.4-99.2) for the estimation of fetal weight using ultrasound. The area under the receiver operating characteristic curves for the prediction of large-for-gestational-age neonates with birthweights of ≥90th, 97th, and 99th percentiles and small-for-gestational-age neonates with birthweights of ≤10th, 5th, and 3rd percentiles was significantly larger in prenatal magnetic resonance imaging than in ultrasound (P<.05 for all).
Conclusion: At 36 weeks' gestation, magnetic resonance imaging for the estimation of fetal weight performed significantly better than ultrasound for the estimation of fetal weight in the prediction of large-for-gestational-age neonates with birthweights of ≥95th percentile for gestational age and all other recognized cutoffs for large-for-gestational-age and small-for-gestational-age neonates (P<.05 for all).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajog.2021.08.001 | DOI Listing |
Jpn J Radiol
January 2025
Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
Magnetic Resonance Imaging (MRI) safety is a critical concern in the Asia-Oceania region, as it is elsewhere in the world, due to the unique and complex MRI environment that demands attention. This call-for-action outlines ten critical steps to enhance MRI safety and promote a culture of responsibility and accountability in the Asia-Oceania region. Key focus areas include strengthening education and expertise, improving quality assurance, fostering collaboration, increasing public awareness, and establishing national safety boards.
View Article and Find Full Text PDFBiomol NMR Assign
January 2025
High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.
PhoCl is a photocleavable protein engineered from a green-to-red photoconvertible fluorescent protein by circular permutation, and has been used in various optogenetic applications including precise control of protein localization and activity in cells. Upon violet light illumination, PhoCl undergoes a β-elimination reaction to be cleaved at the chromophore, resulting in spontaneous dissociation into a large empty barrel and a small C-terminal peptide. However, the structural determinants and the mechanism of the PhoCl photocleavage remain elusive, hindering the further development of more robust photocleavable optogenetic tools.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFEur Child Adolesc Psychiatry
January 2025
Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
While impaired response inhibition has been reported in attention-deficit/hyperactivity disorder (ADHD), findings in disruptive behavior disorders (DBDs) have been inconsistent, probably due to unaccounted effects of co-occurring ADHD in DBD. This study investigated the associations of behavioral and neural correlates of response inhibition with DBD and ADHD symptom severity, covarying for each other in a dimensional approach. Functional magnetic resonance imaging data were available for 35 children and adolescents with DBDs (8-18 years old, 19 males), and 31 age-matched unaffected controls (18 males) while performing a performance-adjusted stop-signal task.
View Article and Find Full Text PDFUltrasound Obstet Gynecol
January 2025
Decision and Bayesian Computation, Neuroscience & Computational Biology Departments, CNRS UMR 3571, Institut Pasteur, Paris, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!