Catalytic Hydrodefluorination via Oxidative Addition, Ligand Metathesis, and Reductive Elimination at Bi(I)/Bi(III) Centers.

J Am Chem Soc

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany.

Published: August 2021

Herein, we report a hydrodefluorination reaction of polyfluoroarenes catalyzed by bismuthinidenes, Phebox-Bi(I) and OMe-Phebox-Bi(I). Mechanistic studies on the elementary steps support a Bi(I)/Bi(III) redox cycle that comprises C(sp)-F oxidative addition, F/H ligand metathesis, and C(sp)-H reductive elimination. Isolation and characterization of a cationic Phebox-Bi(III)(4-tetrafluoropyridyl) triflate manifests the feasible oxidative addition of Phebox-Bi(I) into the C(sp)-F bond. Spectroscopic evidence was provided for the formation of a transient Phebox-Bi(III)(4-tetrafluoropyridyl) hydride during catalysis, which decomposes at low temperature to afford the corresponding C(sp)-H bond while regenerating the propagating Phebox-Bi(I). This protocol represents a distinct catalytic example where a main-group center performs three elementary organometallic steps in a low-valent redox manifold.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8377712PMC
http://dx.doi.org/10.1021/jacs.1c06735DOI Listing

Publication Analysis

Top Keywords

oxidative addition
12
ligand metathesis
8
reductive elimination
8
catalytic hydrodefluorination
4
hydrodefluorination oxidative
4
addition ligand
4
metathesis reductive
4
elimination bii/biiii
4
bii/biiii centers
4
centers report
4

Similar Publications

Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.

View Article and Find Full Text PDF

Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.

View Article and Find Full Text PDF

Winery By-Products and Effects on Atherothrombotic Markers: Focus on Platelet-Activating Factor.

Front Biosci (Landmark Ed)

January 2025

Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece.

Platelet aggregation and inflammation play a crucial role in atherothrombosis. Wine contains micro-constituents of proper quality and quantity that exert cardioprotective actions, partly through inhibiting platelet-activating factor (PAF), a potent inflammatory and thrombotic lipid mediator. However, wine cannot be consumed extensively due to the presence of ethanol.

View Article and Find Full Text PDF

Mitochondria as a Therapeutic Target: Focusing on Traumatic Brain Injury.

J Integr Neurosci

January 2025

Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.

Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.

View Article and Find Full Text PDF

Background: HIV and tuberculosis (TB) co-infection poses a significant health challenge, particularly when involving the central nervous system (CNS), where it leads to severe morbidity and mortality. Current treatments face challenges such as drug resistance, immune reconstitution inflammatory syndrome (IRIS), and persistent inflammation. Glutathione (GSH) has the therapeutic potential to enhance treatment outcomes by improving antibiotic efficacy, reducing inflammation, and mitigating immune dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!