We developed an influenza hemagglutinin (HA) pseudotype library encompassing Influenza A subtypes HA1-18 and Influenza B subtypes (both lineages) to be employed in influenza pseudotype microneutralization (pMN) assays. The pMN is highly sensitive and specific for detecting virus-specific neutralizing antibodies against influenza viruses and can be used to assess antibody functionality in vitro. Here we show the production of these viral HA pseudotypes and their employment as substitutes for wildtype viruses in influenza neutralization assays. We demonstrate their utility in detecting serum responses to vaccination with the ability to evaluate cross-subtype neutralizing responses elicited by specific vaccinating antigens. Our findings may inform further preclinical studies involving immunization dosing regimens in mice and may help in the creation and selection of better antigens for vaccine design. These HA pseudotypes can be harnessed to meet strategic objectives that contribute to the strengthening of global influenza surveillance, expansion of seasonal influenza prevention and control policies, and strengthening pandemic preparedness and response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8310092 | PMC |
http://dx.doi.org/10.3390/vaccines9070741 | DOI Listing |
Emerg Microbes Infect
January 2025
Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
Can Commun Dis Rep
January 2025
Public Health Agency of Canada, Ottawa, ON.
Background: Availability of new vaccines for adults has increased interest in understanding Canada's respiratory syncytial virus (RSV) burden in older adults and adults considered at high risk of severe infection.
Objective: To characterize the burden of RSV disease in Canada by joint analysis of the published literature and hospitalization data from a healthcare administrative database.
Methods: Electronic databases of published literature were searched to identify studies and systematic reviews reporting data on outpatient visits, hospitalizations, intensive care unit (ICU) admissions and deaths associated with RSV infection in adults.
R Soc Open Sci
January 2025
Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
Carbon quantum dots (CQDs) are a recently developed class of fluorescent nanoparticles made from carbon. Co-doping with heteroatoms such as nitrogen and sulfur improved the properties and generated a high quantum yield. In the proposed study, we utilized a simple, cost-effective, single-stage hydrothermal approach to produce extreme photoluminescence co-doped, nitrogen and sulfur, CQDs (N,S-CODs).
View Article and Find Full Text PDFNat Immunol
January 2025
Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada.
Disease tolerance is an evolutionarily conserved host defense strategy that preserves tissue integrity and physiology without affecting pathogen load. Unlike host resistance, the mechanisms underlying disease tolerance remain poorly understood. In the present study, we investigated whether an adjuvant (β-glucan) can reprogram innate immunity to provide protection against influenza A virus (IAV) infection.
View Article and Find Full Text PDFArch Virol
January 2025
National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
Migratory water birds are considered to be carriers of high pathogenicity avian influenza viruses (HPAIVs). In Japan, mallards are often observed during winter, and HPAIV-infected mallards often shed viruses asymptomatically. In this study, we focused on mallards as potential carriers of HPAIVs and investigated whether individual wild mallards are repeatedly infected with HPAIVs and act as HPAIV carriers multiple times within a season.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!