Mixed infection with multiple species of nontuberculous mycobacteria (NTM) is difficult to identify and to treat. Current conventional molecular-based methods for identifying mixed infections are limited due to low specificity. Here, we evaluated the utility of whole-genome sequencing (WGS) analysis to detect and identify mixed NTM infections. Analytical tools used included PubMLST, MetaPhlAn3, Kraken2, Mykrobe-Predictor and analysis of heterozygous SNP frequencies. The ability of each to identify mixed infections of NTM species was compared. Sensitivity was tested using 101 samples (sequence sets) including 100 simulated mixed samples with various proportions of known NTM species and one sample of known mixed NTM species from a public database. Single-species NTM control samples (155 WGS samples from public databases and 15 samples from simulated reads) were tested for specificity. Kraken2 exhibited 100% sensitivity and 98.23% specificity for detection and identification of mixed NTM species with accurate estimation of relative abundance of each species in the mixture. PubMLST (99% and 96.47%) and MetaPhlAn3 (95.04% and 83.52%) had slightly lower sensitivity and specificity. Mykrobe-Predictor had the lowest sensitivity (57.42%). Analysis of read frequencies supporting single nucleotide polymorphisms (SNPs) could not detect mixed NTM samples. Clinical NTM samples ( = 16), suspected on the basis of a 16S-23S rRNA gene sequence-based line-probe assay (LPA) to contain more than one NTM species, were investigated using WGS-analysis tools. This identified only a small proportion (37.5%, 6/16 samples) of the samples as mixed infections and exhibited only partial agreement with LPA results. LPAs seem to be inadequate for detecting mixed NTM species infection. This study demonstrated that WGS-analysis tools can be used for diagnosis of mixed infections with different species of NTM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8308675 | PMC |
http://dx.doi.org/10.3390/pathogens10070879 | DOI Listing |
Clinics (Sao Paulo)
December 2024
Hospital Sírio Libanês, São Paulo, SP, Brazil.
Mycobacteria infections are caused by species of the Mycobacterium tuberculosis complex (MTB) and other species called Non-Tuberculosis Mycobacteria (NTM). Identification of mycobacteria species is very important to define treatment and it can be achieved by direct culture. However, the lack of clear protocols regarding the use of culture or molecular tests on specimens diagnosed with granulomatous lesions causes delays in the diagnosis of the etiological agents and, consequently, the definition of the right treatment.
View Article and Find Full Text PDFVet Sci
November 2024
Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy.
Meagre () is one of the fast-growing species considered for sustainable aquaculture development along the Mediterranean and Eastern Atlantic coasts. The emergence of Systemic Granulomatosis (SG), a disease marked by multiple granulomas in various tissues, poses a significant challenge in meagre aquaculture. In the current study, we investigate the association of spp.
View Article and Find Full Text PDFBiomaterials
May 2025
Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 637551, Singapore; National Center for Infectious Diseases (NCID), 308442, Singapore. Electronic address:
The incidence of serious lung infections due to Mycobacterium abscessus, a worrying non-tuberculosis mycobacteria (NTM) species, is rising and has in some countries surpassed tuberculosis. NTM are ubiquitous in the environment and can cause serious lung infections in people who are immunocompromised or have pre-existing lung conditions. M.
View Article and Find Full Text PDFNon-tuberculous Mycobacterial Pulmonary Disease (NTM-PD) is a chronic disease characterised by progressive inflammatory lung damage due to infection by non-tuberculous mycobacteria (NTM). Global prevalence of NTM-PD is generally low but is rising, likely due to a combination of increased surveillance, increasing multimorbidity and improved diagnostic techniques. Most disease is caused by Mycobacterium avium complex species.
View Article and Find Full Text PDFInt J Mycobacteriol
October 2024
Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.
Background: Pulmonary tuberculosis (TB) is predominantly caused by Mycobacterium tuberculosis complex (MTBC) and can also involve nontuberculous mycobacteria (NTM). These pathogens pose significant global health challenges, particularly in developing countries. Differentiating between MTBC and NTM in clinical specimens is often difficult using conventional acid-fast staining methods, leading to an underestimation of NTM prevalence in TB-endemic regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!