Adenylate kinases of thermophiles and : biochemical and kinetic studies.

Biochem Cell Biol

Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland.

Published: August 2021

Adenylate kinases (AK) play a pivotal role in the regulation of cellular energy. The aim of our work was to achieve the overproduction and purification of AKs from two groups of bacteria and to determine, for the first time, the comprehensive biochemical and kinetic properties of adenylate kinase from Gram-negative (AK) and Gram-positive (AK). Therefore we determined and values, and the effects of temperature, pH, metal ions, donors of the phosphate groups and inhibitor ApA for both thermophilic AKs. The kinetic studies indicate that both AKs exhibit significantly higher affinity for substrates with the pyrophosphate group than for adenosine monophosphate. AK activation by Mg and Mn revealed that both ions are efficient in the synthesis of adenosine diphosphate and adenosine triphosphate; however, Mn ions at 0.2-2.0 mmol/L concentration were more efficient in the activation of the ATP synthesis than Mg ions. Our research demonstrates that zinc ions inhibit the activity of enzymes in both directions, while ApA at a concentration of 10 µmol/L and 50 µmol/L inhibited both enzymes with a different efficiency. Sigmoid-like kinetics were detected at high ATP concentrations not balanced by Mg, suggesting the allosteric effect of ATP for both bacterial AKs.

Download full-text PDF

Source
http://dx.doi.org/10.1139/bcb-2020-0567DOI Listing

Publication Analysis

Top Keywords

adenylate kinases
8
biochemical kinetic
8
kinetic studies
8
ions
5
kinases thermophiles
4
thermophiles biochemical
4
studies adenylate
4
kinases play
4
play pivotal
4
pivotal role
4

Similar Publications

Introduction: WhiA is a conserved protein found in numerous bacteria. It consists of an HTH DNA-binding domain linked with a homing endonuclease (HEN) domain. WhiA is one of the most conserved transcription factors in reduced bacteria of the class Mollicutes.

View Article and Find Full Text PDF

Network pharmacology and molecular docking to explore mechanisms of clozapine-induced cardiac arrest.

J Psychiatry Neurosci

January 2025

From the Computational Biology Centre and the Laboratory of Psychiatric-Neuroimaging-Genetic and Comorbidity, Tianjin Anding Hospital, Tianjin Mental Health Centre of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China.

Background: Clozapine is superior to all other antipsychotics in treating schizophrenia in terms of its curative efficacy; however, this drug is prescribed only as a last resort in the treatment of schizophrenia, given its potential to induce cardiac arrest. The mechanism of clozapine-induced cardiac arrest remains unclear, so we aimed to elucidate the potential mechanisms of clozapine-induced cardiac arrest using network pharmacology and molecular docking.

Methods: We identified and analyzed the overlap between potential cardiac arrest-related target genes and clozapine target genes.

View Article and Find Full Text PDF

Adenylate kinase 5 deficiency impairs epididymal white adipose tissue homeostasis and decreases fat mass.

J Vet Sci

December 2024

Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.

Importance: The brain and adipose tissue interact metabolically, and if there is a problem with the energy metabolism of the brain, it cannot maintain the energy balance with the adipose tissue. Therefore, when adenylate kinase 5 (), which regulates energy metabolism in the brain, is knocked out, problems with lipid metabolism may occur.

Objective: We aimed to elucidate the metabolic function and phenotype of , a gene with an unknown function in metabolism.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a complex metabolic disease characterized by hyperglycemia. Recently, the incidence of diabetes has increased exponentially, and it is estimated to become the seventh leading cause of global mortality by 2030. Glucagon-like peptide-1 (GLP-1), a hormone derived from the intestine, has been demonstrated to exert remarkable hypoglycemic effects.

View Article and Find Full Text PDF
Article Synopsis
  • Protein acetylation is a widely studied post-translational modification, and recent research has identified three new forms: lysine malonylation, succinylation, and glutarylation, which mainly affect energy metabolism in diseases caused by Mycobacterium pathogens.
  • Methods involved using high-affinity antibody enrichment and LC-MS/MS analysis to characterize these new lysine modifications and assess their functional impacts in certain proteins.
  • Results showed significant global substrate characterization for these acylations, revealing connections to ribosomal function and various metabolic pathways, highlighting their importance in cellular processes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!