The Purpose Of The Study: Was to assess the microbial colonization and biofilm-forming activity of conditionally pathogenic microorganisms in vitro to samples of acrylic-free thermoplastic polymer material and to assess the possibility of its use for the manufacture of removable tooth splinting structures by injection method.
Materials And Methods: The reference strains . Biofilm-forming activity was assessed by the level of ethanol extraction of a 0.1% aqueous solution of gentian violet by measuring on a PowerWave X microplate reader (USA).
Results: A low degree of severity of microbial colonization and sufficient colonization resistance to the formation of a microbial biofilm of (0.374±0.056 cu opt. Pl.), (0.272±0.039 cu. Opt. Pl.), (0.299±0.028 cu opt. Pl.), (0.399±0.069 cu opt. Pl.), (0.401±0.089 cu opt. Pl.). Moreover, strains form a more pronounced biofilm (0.425±0.104 cu opt. Pl.) in comparison with other strains studied in the experiment.
Conclusion: Samples from a thermoplastic polymer based on polyoxymethylene have satisfactory biomedical characteristics and can be used at the stages of dental orthopedic treatment of patients without oral candidiasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.17116/stomat202110004172 | DOI Listing |
Int J Biol Macromol
January 2025
Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China. Electronic address:
Due to the emphasis on the environmental and health issues caused by petroleum-based plastics, renewable lignocellulosic materials emerge as promising substitutes. However, their practical application remains hindered by unsatisfactory properties such as fragility and sensitivity to water. Dealing with the challenge of non-thermal processing of xylan and addressing the issue of performance degradation resulting from the hygroscopicity of materials.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F, 3001 Leuven, Belgium. Electronic address:
The fabrication of objects with complex shape and geometry has been greatly facilitated with the advancements in additive manufacturing. While synthetic polymers like ABS and PLA have found widespread use in extrusion 3D printing, other biobased thermoplastics that are both biodegradable and biocompatible could offer strategic advantages over traditional synthetic materials. In this work dextran of low (20 kDa) and medium (40 kDa) molecular weight (MW) was modified with palmitic acid to obtain meltable polymers for extrusion 3D printing/fused deposition modeling additive manufacturing.
View Article and Find Full Text PDFACS Appl Polym Mater
December 2024
IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain.
The transition from insulator to electro-responsive has been successfully achieved by earlier studies for some inorganic materials by applying external stimuli that modify their 3D and/or electronic structures. In the case of insulating polymers, this transition is frequently accomplished by mixing them with other electroactive materials, even though a few physical treatments that induce suitable chemical modifications have also been reported. In this work, a smart approach based on the application of an electro-thermal reorientation process followed by a charged gas activation treatment has been developed for transforming insulating 3D printed polymers into electro-responsive materials.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Espoo, Finland.
Membranes (Basel)
December 2024
School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China.
Triboelectric nanogenerators (TENGs) have garnered significant attention due to their high energy conversion efficiency and extensive application potential in energy harvesting and self-powered devices. Recent advancements in electrospun nanofibers, attributed to their outstanding mechanical properties and tailored surface characteristics, have meant that they can be used as a critical material for enhancing TENGs performance. This review provides a comprehensive overview of the developments in electrospun nanofiber-based TENGs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!