The high volatility, water-immiscibility, and light/oxygen-sensitivity of most aroma compounds represent a challenge to their incorporation in liquid consumer products. Current encapsulation methods entail the use of petroleum-based materials, initiators, and crosslinkers as well as mixing, heating, and purification steps. Hence, more efficient and eco-friendly approaches to encapsulation must be sought. Herein, we propose a simple method by making use of a pre-formed amphiphilic polymer and employing the Hansen Solubility Parameters approach to determine which fragrances could be encapsulated by spontaneous coacervation in water. The coacervates do not precipitate as solids but they remain suspended as colloidally stable liquid microcapsules, as demonstrated by fluorescence correlation spectroscopy. The effective encapsulation of fragrance is proven through confocal Raman spectroscopy, while the structure of the capsules is investigated by means of cryo FIB/SEM, confocal laser scanning microscopy, and small-angle X-ray scattering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596835 | PMC |
http://dx.doi.org/10.1002/anie.202110446 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
Coacervation based on liquid-liquid phase separation (LLPS) has been widely used for the preparation of artificial protocells and to mimic the dynamic organization of membrane-free organelles. Most complex synthetic coacervates are formed through electrostatic interactions but cannot withstand high ionic strength conditions (>0.1 M).
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
School of Pharmacy, Shandong University of Traditional Chinese Medicine Ji'nan 250355, China National Key Laboratory of Integration and Innovation of Prescriptions and Modern Traditional Chinese Medicine,Lunan Pharmaceutical Group Co., Ltd. Linyi 273400,China.
This paper explored the protective effect and potential mechanism of Shouhui Tongbian Capsules(SHTB) on cerebral ischemia-reperfusion rat models. Rats were randomly divided into sham surgery group, model group, low-dose SHTB group(0.2 g·kg~(-1)·d~(-1)), high-dose SHTB group(SHTB g·kg~(-1)·d~(-1)), and an edaravone positive drug group(5.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Campus of Pici, 60440-900 Fortaleza, CE, Brazil. Electronic address:
Anacardic acid (AA) is a phenolic lipid extracted from cashew nutshell liquid that has antitumor activity. Given the high hydrophobicity of this compound and aiming to create efficient vehicle for its administration in aqueous systems, the objective of the present work was to develop a microcapsule (MCAA) by spray dryer technique, based on the polysaccharide sodium hyaluronate (SH), containing AA as its core, encapsulated from nanoemulsion. The Encapsulation Efficiency of MCAA presented a value equal to 95.
View Article and Find Full Text PDFFoods
December 2024
Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA.
In the present study, we analyzed the bioactive curcuminoids content in eight capsules (DS-1-DS-7 and DS-9), one tablet (DS-8), three ground turmeric samples (DS-10-DS-12), and three ground turmeric rhizomes (TR-1, TR-2, and TR-3). Initial screening with infrared and ultraviolet-visible spectroscopy coupled with a principal component analysis (PCA) revealed distinct differences between the samples analyzed. Hence, targeted and untargeted analyses were performed using ultra-high-performance liquid chromatography and gas chromatography coupled with mass spectrometry detections.
View Article and Find Full Text PDFJ Sep Sci
January 2025
Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China.
A novel dual-wavelength ultrahigh performance liquid chromatography (UHPLC) fingerprint was established, 56 common peaks were confirmed and attributed to the source of the medicinal materials, and 13 chromatographic peaks of them were identified by UHPLC quadrupole time-of-flight (Q-TOF)-MS/MS and UHPLC-UV method. Furthermore, a simple and sensitive HPLC-quadrupole trap (Q-TRAP)-MS/MS was developed for the simultaneous determination of 16 active components with electrospray ionization (ESI) source switching between positive and negative modes in a single run. The above two methods were successfully applied for the quality evaluation of Guanxinjing capsule (GXJC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!