A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Breathing Effect via Solvent Inclusions on the Linker Rotational Dynamics of Functionalized MIL-53. | LitMetric

Breathing Effect via Solvent Inclusions on the Linker Rotational Dynamics of Functionalized MIL-53.

Chemistry

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China.

Published: October 2021

The breathing effects of functionalized MIL-53-X (X=H, CH , NH , OH, and NO ) induced by the inclusions of water, methanol, acetone, and N,N-dimethylformamide solvents were comprehensively investigated by solid-state NMR spectroscopy. 2D homo-nuclear correlation NMR provided direct experimental evidence for the host-guest interaction between the guest solvents and the MOF frameworks. The variations of the H and C NMR chemical shifts in functionalized MIL-53 from the narrow pore phase transitions to large pore forms due to solvent inclusions were clearly identified. The influence of functionalized linkers and their host-guest interactions with the confined solvents on the rotational dynamics of the linkers was examined by separated-local-field MAS NMR experiments in conjunction with DFT theoretical calculations. It is found that the linker rotational dynamics of functionalized MIL-53 in narrow pore form is closely related to the computational rotational energy barrier. The BDC-NO linker of activated MIL-53-NO undergoes relatively faster rotation, whereas the BDC-NH and BDC-OH linkers of activated MIL-53-NH and MIL-53-OH exhibit relatively slower rotation. The host-guest interactions between confined solvents and MIL-53-NO , MIL-53-CH would significantly induce an increase of the order parameters of unsubstituted carbon and reduce the rotational frequency of linkers. This study provides a spectroscopic approach for the investigation of linker rotation in functionalized MOFs at natural abundance with solvents inclusions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202102419DOI Listing

Publication Analysis

Top Keywords

rotational dynamics
12
functionalized mil-53
12
solvent inclusions
8
linker rotational
8
dynamics functionalized
8
mil-53 narrow
8
narrow pore
8
host-guest interactions
8
interactions confined
8
confined solvents
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!