Introduction: Radiotherapy is one of the most common types of cancer treatment modalities. Radiation can affect both cancer and normal tissues, which limits the whole delivered dose. It is well documented that radiation activates phosphatidylinositol 3-kinase (PI3K) and AKT signaling pathway; hence, the inhibition of this pathway enhances the radiosensitivity of tumor cells. The mammalian target of rapamycin (mTOR) is a regulator that is involved in autophagy, cell growth, proliferation, and survival.
Conclusion: The inhibition of mTOR as a downstream mediator of the PI3K/AKT signaling pathway represents a vital option for more effective cancer treatments. The combination of PI3K/AKT/mTOR inhibitors with radiation can increase the radiosensitivity of malignant cells to radiation by autophagy activation. Therefore, this review aims to discuss the impact of such inhibitors on the cell response to radiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-021-06607-3 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Nano 2 Micro Material Design Lab, Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
Herein, fluorescent calcium carbonate nanoclusters encapsulated with methotrexate (Mtx) and surface functionalized with chitosan (25 nm) (@Calmat) have been developed for the imaging and treatment of triple-negative breast cancer (TNBC). These biocompatible, pH-sensitive nanoparticles demonstrate significant potential for targeted therapy and diagnostic applications. The efficacy of nanoparticles (NPs) was evaluated in MDA-MB-231 TNBC cell lines.
View Article and Find Full Text PDFInflammation
January 2025
Department of Nephrology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu, 233000, Anhui Province, China.
Primary membranous nephropathy (PMN) is a prevalent renal disorder characterized by immune-mediated damage to the glomerular basement membrane, with recent studies highlighting the significant role of pyroptosis in its progression. In this study, we investigate the molecular mechanisms underlying PMN, focusing on the role of Tumor necrosis factor receptor-associated factor 6 (TRAF6) in promoting disease advancement. Specifically, we examine how TRAF6 facilitates PMN progression by inducing the ubiquitination of Transforming growth factor-beta-activated kinase 1 (TAK1), which in turn activates the Gasdermin D (GSDMD)/Caspase-1 axis, leading to podocyte pyroptosis.
View Article and Find Full Text PDFInflammopharmacology
January 2025
Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β plaques and tau tangles, leading to cognitive decline and dementia. Insulin-like Growth Factor-1 (IGF-1) is similar in structure to insulin and is crucial for cell growth, differentiation, and regulating oxidative stress, synaptic plasticity, and mitochondrial function. IGF-1 exerts its physiological effects by binding to the IGF-1 receptor (IGF-1R) and activating PI3K/Akt pathway.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Orthopaedics, Tianjin Hospital, Tianjin University, Tianjin, China.
Neuropathic pain (NP) imposes a significant burden on individuals, manifesting as nociceptive anaphylaxis, hypersensitivity, and spontaneous pain. Previous studies have shown that traumatic stress in the nervous system can lead to excessive production of hydrogen sulfide (HS) in the gut. As a toxic gas, it can damage the nervous system through the gut-brain axis.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke with high morbidity, mortality and disability, and early brain injury (EBI) after SAH is crucial for prognosis. Recently, stem cell therapy has garnered significant attention in the treatment of neurological diseases. Compared to other stem cells, dental pulp stem cells (DPSCs) possess several advantages, including abundant sources, absence of ethical concerns, non-invasive procurement, non-tumorigenic history and neuroprotective potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!