Assessment of hip displacement in children with cerebral palsy using machine learning approach.

Med Biol Eng Comput

Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada.

Published: September 2021

Manual measurements of migration percentage (MP) on pelvis radiographs for assessing hip displacement are subjective and time consuming. A deep learning approach using convolution neural networks (CNNs) to automatically measure the MP was proposed. The pre-trained Inception ResNet v2 was fine tuned to detect locations of the eight reference landmarks used for MP measurements. A second network, fine-tuned MobileNetV2, was trained on the regions of interest to obtain more precise landmarks' coordinates. The MP was calculated from the final estimated landmarks' locations. A total of 122 radiographs were divided into 57 for training, 10 for validation, and 55 for testing. The mean absolute difference (MAD) and intra-class correlation coefficient (ICC [2,1]) of the comparison for the MP on 110 measurements (left and right hips) were 4.5 [Formula: see text] 4.3% (95% CI, 3.7-5.3%) and 0.91, respectively. Sensitivity and specificity were 87.8% and 93.4% for the classification of hip displacement (MP-threshold of 30%), and 63.2% and 94.5% for the classification of surgery-needed hips (MP-threshold of 40%). The prediction results were returned within 5 s. The developed fine-tuned CNNs detected the landmarks and provided automatic MP measurements with high accuracy and excellent reliability, which can assist clinicians to diagnose hip displacement in children with CP.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-021-02416-9DOI Listing

Publication Analysis

Top Keywords

hip displacement
16
displacement children
8
learning approach
8
assessment hip
4
displacement
4
children cerebral
4
cerebral palsy
4
palsy machine
4
machine learning
4
approach manual
4

Similar Publications

Objective: Reverse obliquity intertrochanteric fracture is an unstable type of fracture. Current guidelines recommend intramedullary fixation, but there are still complications such as screw removal, hip varus, nail withdrawal, and nail fracture. The objective of this study was to use finite element analysis to compare the biomechanical properties of the novel proximal femoral bionic nail (PFBN), proximal femoral nail antirotation (PFNA), and combined compression interlocking intramedullary nail (InterTan) in the treatment of reverse obliquity intertrochanteric fractures (AO/OTA 31-A3.

View Article and Find Full Text PDF

The best treatment method for reverse obliquity intertrochanteric fractures (ROIFs) is still under debate. Our team designed the modified proximal femoral nail (MPFN) specially for treating such fractures. The objective of this research was to introduce the MPFN device and compare the biomechanical properties with Proximal Femoral Nail Antirotation (PFNA) and InterTAN nail via finite element modelling.

View Article and Find Full Text PDF

Barbell squats are commonly used in strength training, but the anterior-posterior displacement of the Center of Mass (COM) may impair joint stability and increase injury risk. This study investigates the key factors influencing COM displacement during different squat modes.; Methods: This study recruited 15 male strength training enthusiasts, who performed 60% of their one-repetition maximum (1RM) in the Front Barbell Squat (FBS), High Bar Back Squat (HBBS), and Low Bar Back Squat (LBBS).

View Article and Find Full Text PDF

The study aimed to evaluate a newly designed semicircular implant for the fixation of Vancouver Type B1 periprosthetic femoral fractures (PFFs) in total hip arthroplasty (THA) patients. To determine its strength and clinical applicability, the new implant was compared biomechanically with conventional fixation methods, such as lateral locking plate fixation and a plate combined with cerclage wires. : Fifteen synthetic femur models were used in this biomechanical study.

View Article and Find Full Text PDF

Radiographic and Clinical Results of Combined Bone and Soft-Tissue Tailored Surgeries for Hip Dislocation and Subluxation in Cerebral Palsy.

Children (Basel)

January 2025

Department of Paediatric Surgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.

Background/objectives: The aim of the study is to present middle-term results of tailored bone and soft-tissue surgeries in subluxated and dislocated hips in children affected by cerebral palsy.

Methods: A total of 87 medical records belonging to 73 children affected by CP, treated with combined soft-tissue releases, VDO, and pelvic osteotomy, were reviewed retrospectively. Radiological measurements of AI, RI, and NSA were obtained before surgery, postoperatively, at 12 and 24 months after surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!