Evolution of practical resistance is the main threat to the sustainability of transgenic crops producing insecticidal proteins from (Bt crops). Monitoring of resistance to Cry and Vip3A proteins produced by Bt crops is critical to mitigate the development of resistance. Currently, Cry/Vip3A resistance allele monitoring is based on bioassays with larvae from inbreeding field-collected moths. As an alternative, DNA-based monitoring tools should increase sensitivity and reduce overall costs compared to bioassay-based screening methods. Here, we evaluated targeted sequencing as a method allowing detection of known and novel candidate resistance alleles to Cry proteins. As a model, we sequenced a Cry1F receptor gene () in fall armyworm () moths from Puerto Rico, a location reporting continued practical field resistance to Cry1F-producing corn. Targeted sequencing detected a previously reported Cry1F resistance allele (), in addition to a resistance allele originally described in populations from Brazil. Moreover, targeted sequencing detected mutations in as novel candidate resistance alleles. These results support further development of targeted sequencing for monitoring resistance to Bt crops and provide unexpected evidence for common resistance alleles in from Brazil and Puerto Rico.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8303720 | PMC |
http://dx.doi.org/10.3390/insects12070618 | DOI Listing |
Mol Ecol
January 2025
Institute of Freshwater Research, Department of Aquatic Resources (SLU Aqua), Swedish University of Agricultural Sciences, Drottningholm, Sweden.
How genetic variation contributes to adaptation at different environments is a central focus in evolutionary biology. However, most free-living species still lack a comprehensive understanding of the primary molecular mechanisms of adaptation. Here, we characterised the targets of selection associated with drastically different aquatic environments-humic and clear water-in the common freshwater fish, Eurasian perch (Perca fluviatilis).
View Article and Find Full Text PDFJ Neuroendocrinol
January 2025
Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.
Gonadotroph neuroendocrine pituitary tumors are among the most common intracranial neoplasms. A notable proportion of these tumors is characterized by invasive growth which hampers the treatment results and worsens prognoses of patients. Increased hsa-miR-184 expression was observed in invasive as compared to non-invasive gonadotroph tumors.
View Article and Find Full Text PDFZool Res
January 2025
School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases, Qingdao University, Qingdao, Shandong, 266071, China. E-mail:
Iron is the most abundant transition metal in the brain and is essential for brain development and neuronal function; however, its abnormal accumulation is also implicated in various neurological disorders. The olfactory bulb (OB), an early target in neurodegenerative diseases, acts as a gateway for environmental toxins and contains diverse neuronal populations with distinct roles. This study explored the cell-specific vulnerability to iron in the OB using a mouse model of intranasal administration of ferric ammonium citrate (FAC).
View Article and Find Full Text PDFZool Res
January 2025
Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210000, China.
Increasing evidence implicates disruptions in testicular fatty acid metabolism as a contributing factor in non-obstructive azoospermia (NOA), a severe form of male infertility. However, the precise mechanisms linking fatty acid metabolism to NOA pathogenesis have not yet been fully elucidated. Multi-omics analyses, including microarray analysis, single-cell RNA sequencing (scRNA-seq), and metabolomics, were utilized to investigate disruptions in fatty acid metabolism associated with NOA using data from public databases.
View Article and Find Full Text PDFZool Res
January 2025
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, Inner Mongolia 010070, China.
Somatic cell nuclear transfer (SCNT) has been successfully employed across various mammalian species, yet cloned animals consistently exhibit low pregnancy rates, primarily due to placental abnormalities such as hyperplasia and hypertrophy. This study investigated the involvement of the Hippo signaling pathway in aberrant placental development in SCNT-induced bovine pregnancies. SCNT-derived cattle exhibited placental hypertrophy, including enlarged abdominal circumference and altered placental cotyledon morphology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!