Membrane Fouling Phenomena in Microfluidic Systems: From Technical Challenges to Scientific Opportunities.

Micromachines (Basel)

Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico, 80125 Naples, Italy.

Published: July 2021

The almost ubiquitous, though undesired, deposition and accumulation of suspended/dissolved matter on solid surfaces, known as fouling, represents a crucial issue strongly affecting the efficiency and sustainability of micro-scale reactors. Fouling becomes even more detrimental for all the applications that require the use of membrane separation units. As a matter of fact, membrane technology is a key route towards process intensification, having the potential to replace conventional separation procedures, with significant energy savings and reduced environmental impact, in a broad range of applications, from water purification to food and pharmaceutical industries. Despite all the research efforts so far, fouling still represents an unsolved problem. The complex interplay of physical and chemical mechanisms governing its evolution is indeed yet to be fully unraveled and the role played by foulants' properties or operating conditions is an area of active research where microfluidics can play a fundamental role. The aim of this review is to explore fouling through microfluidic systems, assessing the fundamental interactions involved and how microfluidics enables the comprehension of the mechanisms characterizing the process. The main mathematical models describing the fouling stages will also be reviewed and their limitations discussed. Finally, the principal dynamic investigation techniques in which microfluidics represents a key tool will be discussed, analyzing their employment to study fouling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305447PMC
http://dx.doi.org/10.3390/mi12070820DOI Listing

Publication Analysis

Top Keywords

microfluidic systems
8
fouling represents
8
fouling
6
membrane fouling
4
fouling phenomena
4
phenomena microfluidic
4
systems technical
4
technical challenges
4
challenges scientific
4
scientific opportunities
4

Similar Publications

Monitoring and optimization of the microenvironment in a gravity-driven microfluidic system placed on a slow-tilting table.

J Biosci Bioeng

January 2025

Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka, Niigata 940-2188, Japan; Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka, Niigata, 940-2188 Japan. Electronic address:

Gravity-driven microfluidic chips offer portability and flexibility in different settings because pumps and connecting tubes are unnecessary for driving fluid flow. In a previous study, human induced pluripotent stem cells were cultured using gravity-driven microfluidics, with the liquid flow rate regulated by a tilting table. However, instability in cell culture has been observed, occasionally leading to cell death owing to unknown causes.

View Article and Find Full Text PDF

Machine learning-integrated droplet microfluidic system for accurate quantification and classification of microplastics.

Water Res

January 2025

Department of Mechanical Engineering, Sogang University, Seoul, South Korea; Institute of Integrated Biotechnology, Sogang University, Seoul, South Korea; Department of Biomedical Engineering, Sogang University, Seoul, South Korea; Institute of Smart Biosensor, Sogang University, Seoul, South Korea. Electronic address:

Microplastic (MP) pollution poses serious environmental and public health concerns, requiring efficient detection methods. Conventional techniques have the limitations of labor-intensive workflows and complex instrumentation, hindering rapid on-site field analysis. Here, we present the Machine learning (ML)-Integrated Droplet-based REal-time Analysis of MP (MiDREAM) system.

View Article and Find Full Text PDF

Microfluidics Based Particle and Droplet Generation for Gene and Drug Delivery Approaches.

J Biomed Mater Res B Appl Biomater

February 2025

Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey.

Microfluidics-based droplets have emerged as a powerful technology for biomedical research, offering precise control over droplet size and structure, optimal mixing of solutions, and prevention of cross-contamination. It is a major branch of microfluidic technology with applications in diagnostic testing, imaging, separation, and gene amplification. This review discusses the different aspects of microfluidic devices, droplet generation techniques, droplet types, and the production of micro/nano particles, along with their advantages and limitations.

View Article and Find Full Text PDF

Single Cell-Pair Proteomics for Decoding Immune-Cancer Cell Interactions.

Adv Sci (Weinh)

January 2025

Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.

The efficacy of cancer immunotherapy is significantly influenced by the heterogeneity of individual tumors and immune responses. To investigate this phenomenon, a microfluidic platform is constructed for profiling immune-cancer cell interactions at the single-cell proteomics level for the first time. Based on the platform, a comprehensive workflow is proposed for achieving accurate single-cell pairing of an immune cell and a cancer cell with low cell damage and high success rate up to 95%, cell pair co-culture, and real-time microscopic monitoring of the cell-pair interactions, cell pair retrieval, mass spectrometry-based proteomic analysis of singe cell pairs, and decoupling of the proteomic information for each cell within the cell pair with the stable-isotope labeling method.

View Article and Find Full Text PDF

Exploring microfluidics-based organoid interactions through analysis of albumin secretion.

Lab Chip

January 2025

State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, #2 Linggong Road, Dalian, 116024, China.

Organoids-on-a-chip exhibit significant potential for advancing disease modeling, drug screening, and precision medicine, largely due to their capacity to facilitate interactions among organoids. However, the influence of chip design on these interactions remains poorly understood, primarily due to our limited knowledge of the mediators of communication and the complexity of interaction dynamics. This study demonstrates that analyzing albumin secretion from liver organoids within an organoids-on-a-chip system can provide a measure of the interaction intensity among organoids, offering valuable insights into how chip design influences these interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!