Activity of Anti-Microbial Peptides (AMPs) against and Other Parasites: An Overview.

Biomolecules

ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Navarra, Spain.

Published: July 2021

Anti-microbial peptides (AMPs), small biologically active molecules, produced by different organisms through their innate immune system, have become a considerable subject of interest in the request of novel therapeutics. Most of these peptides are cationic-amphipathic, exhibiting two main mechanisms of action, direct lysis and by modulating the immunity. The most commonly reported activity of AMPs is their anti-bacterial effects, although other effects, such as anti-fungal, anti-viral, and anti-parasitic, as well as anti-tumor mechanisms of action have also been described. Their anti-parasitic effect against leishmaniasis has been studied. Leishmaniasis is a neglected tropical disease. Currently among parasitic diseases, it is the second most threating illness after malaria. Clinical treatments, mainly antimonial derivatives, are related to drug resistance and some undesirable effects. Therefore, the development of new therapeutic agents has become a priority, and AMPs constitute a promising alternative. In this work, we describe the principal families of AMPs (melittin, cecropin, cathelicidin, defensin, magainin, temporin, dermaseptin, eumenitin, and histatin) exhibiting a potential anti-leishmanial activity, as well as their effectiveness against other microorganisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8301979PMC
http://dx.doi.org/10.3390/biom11070984DOI Listing

Publication Analysis

Top Keywords

anti-microbial peptides
8
peptides amps
8
mechanisms action
8
amps
5
activity anti-microbial
4
amps parasites
4
parasites overview
4
overview anti-microbial
4
amps small
4
small biologically
4

Similar Publications

Cyclotides are a class of plant-derived cyclic peptides having a distinctive structure with a cyclic cystine knot (CCK) motif. They are stable molecules that naturally play a role in plant defense. Till date, more than 750 cyclotides have been reported among diverse plant taxa belonging to Cucurbitaceae, Violaceae, Rubiaceae, Solanaceae, and Fabaceae.

View Article and Find Full Text PDF

Background: Aerobic vaginitis (AV) is a state of abnormal vaginal microbiota, which is associated with increased numbers of aerobic, enteric bacteria and inflammation of the vaginal epithelium. Anti-microbial treatment combined with anti-inflammatory therapy could be useful in the treatment of this condition. It is known that calcitriol, the active form of vitamin D, plays an important role in modulating the immune response in several inflammatory diseases.

View Article and Find Full Text PDF

Seaweed, a promising source of nutritional proteins, including protein hydrolysates, bioactive peptides, phycobiliproteins, and lectins with multi-biological activities. Seaweeds-derived proteins and peptides have attracted increasing interest for their potential applications in dietary supplements, functional foods, and pharmaceuticals industries. This work aims to comprehensively review the preparation methods and virtual screening strategies for seaweed-derived functional peptides.

View Article and Find Full Text PDF

The emergence and re-emergence of multi-drug-resistant (MDR) infectious diseases have once again posed a significant global health challenge, largely attributed to the development of bacterial resistance to conventional anti-microbial treatments. To mitigate the risk of drug resistance globally, both antibiotics and immunotherapy are essential. Antimicrobial peptides (AMPs), also referred to as host defense peptides (HDPs), present a promising therapeutic alternative for treating drug-resistant infections due to their various mechanisms of action, which encompass antimicrobial and immunomodulatory effects.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are small, positively charged biomolecules produced by various organisms such as animals, microbes, and plants. These AMPs play a significant role in defense mechanisms and protect from adverse conditions. The emerging problem of drug resistance in microbes poses a global health challenge in treating diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!