Myocilin (MYOC) is a glycoprotein encoded by a gene associated with glaucoma pathology. In addition to the eyes, it also expresses at high transcription levels in the heart and skeletal muscle. MYOC affects the formation of the murine gastrocnemius muscle and is associated with the differentiation of mouse osteoblasts, but its role in the differentiation of C2C12 cells has not yet been reported. Here, MYOC expression was found to increase gradually during the differentiation of C2C12 cells. Overexpression of MYOC resulted in enhanced differentiation of C2C12 cells while its inhibition caused reduced differentiation. Furthermore, immunoprecipitation indicated that MYOC binds to Caveolin-1 (CAV1), a protein that influences the TGF-β pathway. Laser confocal microscopy also revealed the common sites of action of the two during the differentiation of C2C12 cells. Additionally, CAV1 was upregulated significantly as C2C12 cells differentiated, with CAV1 able to influence the differentiation of the cells. Furthermore, the Western blotting analysis demonstrated that the expression of MYOC affected the TGF-β pathway. Finally, MYOC was overexpressed while CAV1 was inhibited. The results indicate that reduced CAV1 expression blocked the promotion of C2C12 cell differentiation by MYOC. In conclusion, the results demonstrated that MYOC regulates TGF-β by influencing CAV1 to promote the differentiation of C2C12 cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8301362 | PMC |
http://dx.doi.org/10.3390/biology10070686 | DOI Listing |
Exp Cell Res
December 2024
Department of Extremity, Hand and Foot Microsurgery, the First People's Hospital of Chenzhou, China. Electronic address:
Background: Promoting muscle regeneration through stem cell therapy has potential risks. We investigated the effect of umbilical cord mesenchymal stem cells (UMSCs) Exosomes (Exo) Follistatin on muscle regeneration.
Methods: The Exo was derived from UMSCs cells and was utilized to affect the mice muscle injury model and C2C12 cells myotubes atrophy model.
Cell Signal
December 2024
Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China. Electronic address:
This study aimed to investigate the underlying mechanisms by which physical exercise mitigates muscle atrophy induced by Dexamethasone (Dex). A muscle atrophy model was established in the mouse C2C12 cell line and 8-week-old mice treated with Dex, with subsequent verification of phenotype and atrogene expression. The potential benefits of combined aerobic and resistance exercise in mitigating muscle atrophy were then examined.
View Article and Find Full Text PDFVet Parasitol
December 2024
College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China. Electronic address:
Trichinella spiralis infection is a serious parasitic zoonosis in which a collagenous capsule surrounding the larva is developed in the striated muscle cells. However, the mechanism of T. spiralis encapsulation is currently poorly understood.
View Article and Find Full Text PDFJ Med Food
December 2024
Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Republic of Korea.
Here, we investigated whether a mixture of and (1:3, KGC01CE) could suppress muscle atrophy in HO-induced C2C12 cells and dexamethasone-injected mice. Our results revealed that KGC01CE effectively safeguarded against HO-induced muscle atrophy in C2C12 cells compared with the same mixture at other ratios. We demonstrated that dexamethasone elicited oxidative stress in muscle tissue and decreased the grip strength and cross-sectional areas of muscle fibers; however, oral administration of KGC01CE (1:3) suppressed these dexamethasone-induced changes.
View Article and Find Full Text PDFMar Drugs
December 2024
Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
The objective of this study was to examine whether fucosterol, a phytosterol of marine algae, could ameliorate skeletal muscle atrophy in tumor necrosis factor-alpha (TNF-α)-treated C2C12 myotubes and in immobilization-induced C57BL/6J mice. Male C57BL6J mice were immobilized for 1 week to induce skeletal muscle atrophy. Following immobilization, the mice were administrated orally with saline or fucosterol (10 or 30 mg/kg/day) for 1 week.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!