AI Article Synopsis

  • The role of cysteine residue modification by nitric oxide (NO) is essential for understanding its various biological functions in health and disease.
  • The review focuses on nitrosothiol formation and degradation, highlighting the challenges in predicting which thiols are targeted due to unclear specificity.
  • It proposes a classification of the reaction mechanisms involved in the nitrosothiol formation process, considering factors like kinetics, thermodynamics, and the influence of NO sources and potential reaction targets.

Article Abstract

The modification of protein cysteine residues underlies some of the diverse biological functions of nitric oxide (NO) in physiology and disease. The formation of stable nitrosothiols occurs under biologically relevant conditions and time scales. However, the factors that determine the selective nature of this modification remain poorly understood, making it difficult to predict thiol targets and thus construct informatics networks. In this review, the biological chemistry of NO will be considered within the context of nitrosothiol formation and degradation whilst considering how specificity is achieved in this important post-translational modification. Since nitrosothiol formation requires a formal one-electron oxidation, a classification of reaction mechanisms is proposed regarding which species undergoes electron abstraction: NO, thiol or S-NO radical intermediate. Relevant kinetic, thermodynamic and mechanistic considerations will be examined and the impact of sources of NO and the chemical nature of potential reaction targets is also discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8301044PMC
http://dx.doi.org/10.3390/antiox10071111DOI Listing

Publication Analysis

Top Keywords

formation degradation
8
nitrosothiol formation
8
biological mechanisms
4
mechanisms -nitrosothiol
4
formation
4
-nitrosothiol formation
4
degradation specificity
4
specificity -nitrosylation
4
-nitrosylation achieved?
4
achieved? modification
4

Similar Publications

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Incidence and Risk Factors for Amiodarone-Induced Thyroid Dysfunction: A Nationwide Retrospective Cohort Study.

Am J Cardiovasc Drugs

January 2025

Division of Cardiology, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea.

Background: Amiodarone is an effective anti-arrhythmic drug; however, it is frequently associated with thyroid dysfunction. The aim of this study was to investigate the incidence and risk factor of amiodarone-induced dysfunction in an iodine-sufficient area.

Methods: This retrospective cohort study included 27,023 consecutive patients treated with amiodarone for arrhythmia, using the Korean National Health Insurance database.

View Article and Find Full Text PDF

Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.

View Article and Find Full Text PDF

From Genetic Findings to new Intestinal Molecular Targets in Lipid Metabolism.

Curr Atheroscler Rep

January 2025

Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thorax, F-44000, Nantes, France.

Purpose Of Review: While lipid-lowering therapies demonstrate efficacy, many patients still contend with significant residual risk of atherosclerotic cardiovascular diseases (ASCVD). The intestine plays a pivotal role in regulating circulating lipoproteins levels, thereby exerting influence on ASCVD pathogenesis. This review underscores recent genetic findings from the last six years that delineate new biological pathways and actors in the intestine which regulate lipid-related ASCVD risk.

View Article and Find Full Text PDF

Recent studies have suggested that the interaction between diet and an individual's genetic predisposition can determine the likelihood of obesity and various metabolic disorders. The current study aimed to examine the association of dietary branched-chain amino acids(BCAAs) and aromatic amino acids(AAAs) with the expression of the leptin and FTO genes in the visceral and subcutaneous adipose tissues of individuals undergoing surgery. This cross-sectional study was conducted on 136 Iranian adults, both men and women, aged ≥18 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!