AI Article Synopsis

  • - The study investigates the gut microbiome differences between 'metabolically healthy obeses' (MHOs) and 'metabolically unhealthy obeses' (MUOs) in individuals from two regions in China, highlighting that 10-30% of obese individuals can be classified as MHOs despite their obesity.
  • - Researchers compared gut microbiomes of 172 MHOs and 138 MUOs in Chongqing, validating findings in a separate group of 40 MHOs and 33 MUOs in Quanzhou, which varied in dietary preferences.
  • - Results showed specific bacteria were more abundant in MHOs, while MUOs had different microbial functions linked to glycan metabolism; findings point to the gut microbiome's potential

Article Abstract

Despite that obesity is associated with many metabolic diseases, a significant proportion (10-30 %) of obese individuals is recognized as 'metabolically healthy obeses' (MHOs). The aim of the current study is to characterize the gut microbiome for MHOs as compared to 'metabolically unhealthy obeses' (MUOs). We compared the gut microbiome of 172 MHO and 138 MUO individuals from Chongqing (China) (inclined to eat red meat and food with a spicy taste), and performed validation with selected biomarkers in 40 MHOs and 33 MUOs from Quanzhou (China) (inclined to eat seafood and food with a light/bland taste). The genera , and had increased abundance in both Chongqing and Quanzhou MHOs. We also observed different microbial functions in MUOs compared to MHOs, including an increased abundance of genes associated with glycan biosynthesis and metabolism. In addition, the microbial gene markers identified from the Chongqing cohort bear a moderate accuracy [AUC (area under the operating characteristic curve)=0.69] for classifying MHOs distinct from MUOs in the Quanzhou cohort. These findings indicate that gut microbiome is significantly distinct between MHOs and MUOs, implicating the potential of the gut microbiome in stratification and refined management of obesity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549370PMC
http://dx.doi.org/10.1099/mgen.0.000639DOI Listing

Publication Analysis

Top Keywords

gut microbiome
20
muos compared
8
china inclined
8
inclined eat
8
mhos muos
8
muos quanzhou
8
increased abundance
8
mhos
7
gut
5
microbiome
5

Similar Publications

Revealing NOD1-Activating Gram-Positive Gut Microbiota via in Vivo Labeling with a meso-Diaminopimelic Acid Probe.

ACS Chem Biol

January 2025

Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.

As an important receptor in a host's immune and metabolic systems, NOD1 is usually activated by Gram-negative bacteria having -diaminopimelic acid (-DAP) in their peptidoglycan (PGN). But some atypical Gram-positive bacteria also contain -DAP in their PGN, giving them the potential to activate NOD1. The prevalence of -DAP-type Gram-positive bacteria in the gut, however, remains largely unknown.

View Article and Find Full Text PDF

Unlabelled: APC 4099, isolated from bees' gut, has been identified as a promising candidate for food biopreservation. Antimicrobial activity screening revealed a broad-spectrum inhibition potential, ranging from gram-positive pathogenic bacteria to fungi responsible for food spoilage. Genomic analysis identified biosynthetic gene clusters coding for several antimicrobial peptides and secondary metabolites.

View Article and Find Full Text PDF

Metagenomics has revealed the incredible diversity of phages within the human gut. However, very few of these phages have been subjected to in-depth experimental characterization. One promising method of obtaining novel phages for experimental characterization is through induction of the prophages integrated into the genomes of cultured gut bacteria.

View Article and Find Full Text PDF

A novel robust network construction and analysis workflow for mining infant microbiota relationships.

mSystems

December 2024

Laboratory of Microbiology, Immunology, and Metabolism, Diprobio (Shanghai) Co., Limited, Shanghai, China.

Unlabelled: The gut microbiota plays a crucial role in infant health, with its development during the first 1,000 days influencing health outcomes. Understanding the relationships within the microbiota is essential to linking its maturation process to these outcomes. Several network-based methods have been developed to analyze the developing patterns of infant microbiota, but evaluating the reliability and effectiveness of these approaches remains a challenge.

View Article and Find Full Text PDF

Chronic Kidney Disease (CKD) is one of the most common conditions affecting felines, yet the metabolic alterations underlying its pathophysiology remain poorly understood, hindering progress in identifying biomarkers and therapeutic targets. This study aimed to provide a comprehensive view of metabolic changes in feline CKD across conserved biochemical pathways and evaluate their progression throughout the disease continuum. Using a multi-biomatrix high-throughput metabolomics approach, serum and urine samples from CKD-affected cats ( = 94) and healthy controls ( = 84) were analyzed with ultra-high-performance liquid chromatography-high-resolution mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!