Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cobalt based perovskites have great potential for numerous applications. Contrary to a generally assumed hexagonal space group (SG P6/mmc) model as the ground state of BaCoO (BCO), our hybrid DFT calculations with B1WC density functional and the symmetry group-subgroup derived crystal structure model support the ground state of BCO to be indeed monoclinic, in agreement with recent experimental predictions [Chin et al., Phys. Rev. B, 2019, 100, 205139]. We found for the monoclinic BCO that the C-type anti-ferromagnetic low-spin (AFM LS) state (SG P2/c) is energetically only slightly more preferential at 0 K than the ferromagnetic (FM) LS state (SG C2/c). In turn, these monoclinic structures are energetically more favourable than the hexagonal ones, due to slight z-axis tilting. The analysis of density of states (DOS) and crystal orbital overlap population (COOP) shows a significant (almost 2 eV) separation between occupied and empty t states (in the spin-down channel and corresponding anti-bonding states) induced by the z-axis tilting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cp01900g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!