Hydrogel is a kind of 3D polymer network with strong swelling ability in water and appropriate mechanical and biological properties, which make it feasible to maintain bioactive substances and has promising applications in the fields of biomaterials, soft machines, and artificial tissues. Unfortunately, traditional hydrogels prepared by chemical crosslinking have poor mechanical properties and limited functions, which limit their further application. In recent years, with the continuous development of nanoparticle research, more and more studies have combined nanoparticles with hydrogels to make up for the shortcomings of traditional hydrogels. In this article, the types and functions of hydrogels and nanomaterials are introduced first, as well as the functions and applications of injectable nanocomposite hydrogels (INHs), then the latest progress of INHs for cancer treatment is reviewed, some existing problems are summarized, and the application prospect of NHs is prospected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.202100186 | DOI Listing |
J Colloid Interface Sci
December 2024
School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, PR China. Electronic address:
Hyperthermia has emerged as a popular treatment option due to its high efficacy and seamless integration with other therapeutic approaches. To enhance treatment outcomes, hydrogels loaded with photothermal agents and activated by near-infrared (NIR) light for localized tumor therapy have attracted considerable attention. This approach minimizes drug dosage and mitigates the adverse effects of systemic drug delivery on healthy tissues.
View Article and Find Full Text PDFGels
December 2024
Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia.
The application of nanocomposites based on polyacrylamide hydrogels as well as silica nanoparticles in various tasks related to the petroleum industry has been rapidly developing in the last 10-15 years. Analysis of the literature has shown that the introduction of nanoparticles into hydrogels significantly increases their structural and mechanical characteristics and improves their thermal stability. Nanocomposites based on hydrogels are used in different technological processes of oil production: for conformance control, water shutoff in production wells, and well killing with loss circulation control.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541001, PR China.
High locoregional recurrence rates and potential wound infections remain a significant challenge for postoperative breast cancer patients. Herein, we developed a dual-network hyaluronic acid (HA) nanocomposite hydrogel composed of herring sperm DNA (hsDNA) bridged methacrylated HA (HAMA) and FeMg-LDH-ppsa nanohybrid chelated catechol-modified HA (HADA) for the prevention of breast cancer recurrent, anti-infection, and promoting wound healing. Dynamic reversible hsDNA cross-linking combined with metal-catechol chelating renders the hydrogel injectability, rapid self-healing ability, and enhanced mechanical properties.
View Article and Find Full Text PDFNanoscale
December 2024
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
Polyvinylidene fluoride (PVDF) film, with high energy density and excellent mechanical properties, has drawn attention as an energy storage device. However, conduction loss in PVDF under high electric fields hinders improvement in efficiency due to electrode-limited and bulk-limited conduction. Well-aligned multilayer interfaces of two-dimensional (2D) nanocoatings can block charge injection, reducing electrode-limited conduction loss in dielectric polymers.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, PR China. Electronic address:
Intractable infected wound caused by drug-resistant bacteria remains a severe healthcare problem. Reactive oxygen species (ROS)-based nanocatalytic therapy (ROS-NT) is harnessed to combat drug-resistant bacterial infection. However, it can also cause immune imbalance and excessive inflammatory responses, postponing subsequent wound healing process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!