The processing of rice (Oryza sativa L.) generates large quantities of lignocellulosic wastes termed rice husks (RH). Numerous researchers have proposed biomass gasification as the panacea to the waste disposal and management challenges posed by RH. However, a comprehensive analysis of RH gasification is required to examine the research landscape and future directions on the area. The research landscape and global developments on RH gasification from 1995 to 2019 are examined through bibliometric analysis of 228 publications extracted from the Web of Science. Bioresource Technology is considered the most influential journal on the topic, whereas China is the most productive nation due to government policies and research funding. The most productive organization is the Harbin Institute of Technology, which is due to the significant contributions of Zhao YiJun and co-workers. Keyword analysis revealed three crucial research themes: gasification, biomass, and rice husks. The literature revealed that the syngas yield, distribution, and performance of RH gasification are significantly influenced by temperature, equivalence ratio, selected reactor, and gasifying medium. The techno-economic analysis of RH gasification revealed that government interventions such as high sales rates and low investment costs could enhance the commercial viability of the technology. Furthermore, the integration of RH gasification with carbon capture utilization and storage could promote the decarbonization of power plants, negative emissions, and net-zero climate goals. Overall, the paper provides valuable information for future researchers to identify strategic collaborators, journal publications, and research frontiers yet unexplored.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-15761-xDOI Listing

Publication Analysis

Top Keywords

rice husks
12
bibliometric analysis
8
gasification
8
analysis gasification
8
analysis landscape
4
rice
4
landscape rice
4
husks gasification
4
gasification 1995-2019
4
1995-2019 processing
4

Similar Publications

This study explores the potential of using underutilized materials from agricultural and forestry systems, such as rice husk, wheat straw, and wood strands, in developing corrugated core sandwich panels as a structural building material. By leveraging the unique properties of these biobased materials within a corrugated geometry, the research presents a novel approach to enhancing the structural performance of such underutilized biobased materials. These biobased materials were used in different lengths to consider the manufacturing feasibility of corrugated panels and the effect of fiber length on their structural performance.

View Article and Find Full Text PDF

Foliar uptake, translocation and its contribution to Cadmium accumulation in rice.

Sci Total Environ

January 2025

National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resource, Hunan Agricultural University, Hunan 410128, China. Electronic address:

Rice may absorb Cadmium (Cd) from the air through its leaves. The process of Cd foliar absorption, accumulation, and redistribution is yet unknown, nevertheless. In this study, the process of Cd absorption from rice leaves and its accumulation and redistribution during all stages of the rice plant's growth were examined.

View Article and Find Full Text PDF

A 2-year pure biochar addition enhances soil carbon sequestration and reduces aggregate stability in understory conditions.

Sci Rep

December 2024

Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Xiaoliang Research Station for Tropical Coastal Ecosystems, Chinese Academy of Sciences, Guangzhou, 510650, China.

The enhancement of soil aggregate size and stability is crucial for mitigating climate change and improving carbon sequestration in forest ecosystems. Biochar, derived from rice husks, has been suggested as an effective mean to increase soil carbon storage. However, isolating biochar's specific effects on soil aggregate formation and carbon sink capacity can be complex due to the overlapping influences of fertilization and understory vegetation cultivation.

View Article and Find Full Text PDF

Harnessing rice husks: Bioethanol production for sustainable future.

Curr Res Microb Sci

October 2024

Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India.

The investigation of biofuel production from rice husks highlights its potential as a sustainable energy source amid rising environmental concerns and the gradual loss of fossil fuel sources. Biomass-derived biofuels, notably those derived from lignocellulosic materials, such as rice husks, provide a sustainable and environmentally friendly alternative that reduces greenhouse gas emissions while improving energy security. This review explores the need to produce biofuels along with the progression of biofuel technology throughout the four generations and the specific mechanisms involved in the conversion of bioethanol from rice husks.

View Article and Find Full Text PDF

Rice husk derived lignin/silica hybrid nanoparticles stabilized Pickering emulsion for phytosterol ester biosynthesis.

Int J Biol Macromol

December 2024

School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia.

This study investigates the production of lignin/silica hybrid nanoparticles (LSNPs) from rice husks, an abundant agricultural waste, and their capacity to stabilize Pickering emulsions for biocatalysis. Lignin extracted from rice husks under alkaline conditions was co-precipitated with silica to produce LSNPs in the presence or absence of ethanol as a co-solvent. Characterization of LSNPs revealed that ethanol played a key role in forming uniform, spherical nanoparticles and minimizing aggregation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!