Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To compare the accuracy and precision of a hip-worn accelerometer to predict energy cost during structured activities across motor performance and disease conditions.
Methods: 118 adults self-identifying as healthy ( = 44) and those with arthritis ( = 23), multiple sclerosis ( = 18), Parkinson's disease ( = 17), and stroke ( =18) underwent measures of motor performance and were categorized into groups: Group 1, usual; Group 2, moderate impairment; and Group 3, severe impairment. The participants completed structured activities while wearing an accelerometer and a portable metabolic measurement system. Accelerometer-predicted energy cost (metabolic equivalent of tasks [METs]) were compared with measured METs and evaluated across functional impairment and disease conditions. Statistical significance was assessed using linear mixed effect models and Bayesian information criteria to assess model fit.
Results: All activities' accelerometer counts per minute (CPM) were 29.5-72.6% less for those with disease compared with those who were healthy. The predicted MET bias was similar across disease, -0.49 (-0.71, -0.27) for arthritis, -0.38 (-0.53, -0.22) for healthy, -0.44 (-0.68, -0.20) for MS, -0.34 (-0.58, -0.09) for Parkinson's, and -0.30 (-0.54, -0.06) for stroke. For functional impairment, there was a graded reduction in CPM for all activities: Group 1, 1,215 CPM (1,129, 1,301); Group 2, 789 CPM (695, 884); and Group 3, 343 CPM (220, 466). The predicted MET bias revealed similar results across the Group 1, -0.37 METs (-0.52, -0.23); Group 2, -0.44 METs (-0.60, -0.28); and Group 3, -0.33 METs (-0.55, -0.13). The Bayesian information criteria showed a better model fit for functional impairment compared with disease condition.
Conclusion: Using functionality to improve accelerometer calibration could decrease variability and warrants further exploration to improve accelerometer prediction of physical activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8330493 | PMC |
http://dx.doi.org/10.1123/jmpb.2020-0027 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!