Stress may have a negative effect on mental health and is the primary environmental risk factor in the aetiology of depression. Nevertheless, the neurobiological mechanisms underlying this mood disorder remain poorly characterized. The hippocampus is a target structure of the adverse effects of stress, and hippocampal neurogenesis plays a crucial role. However, we do not know the mechanisms by which stress impacts neurogenesis. Recent studies indicate that changes in neuroinflammation, primarily via microglial cells, may play an essential role in this process. However, the relationship between stress, microglial changes, and alterations in neurogenesis and their involvement in the development of depression is poorly characterized. For this reason, this systematic review aims to synthesise and evaluate current studies that have investigated the relationship between these variables. Taken together, the revised data, although not entirely conclusive, seem to suggest that microglial changes induced by psychological stress regulate neurogenesis and in turn may be responsible for the development of depressive-like behaviours, but other factors that influence these stressful experiences should not be dismissed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8319800 | PMC |
http://dx.doi.org/10.1016/j.ynstr.2021.100356 | DOI Listing |
Major depressive disorder (MDD) is a common mood condition affecting multiple brain regions and cell types. Changes in astrocyte function contribute to depressive-like behaviors. However, while neuronal mechanisms driving MDD have been studied in some detail, molecular mechanisms by which astrocytes promote depression have not been extensively explored.
View Article and Find Full Text PDFBehav Neurol
January 2025
Laboratory of Neurobiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
Astrocytes are the primary cell type in the central nervous system, responsible for maintaining the stability of the brain's internal environment and supporting neuronal functions. Researches have demonstrated the close relationship between astrocytes and the pathophysiology and etiology of major depressive disorder. However, the regulatory mechanisms of astrocytes during depression remain unclear.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China.
Repeated closed-head injuries (rCHI) from activities like contact sports, falls, military combat, and traffic accidents pose a serious risk due to their cumulative impact on the brain. Often, rCHI is not diagnosed until symptoms of irreversible brain damage appear, highlighting the need for preventive measures. This study assessed the prophylactic efficacy of remote photobiomodulation (PBM) targeted at the lungs against rCHI-induced brain injury and associated behavioral deficits.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Hunan University of Traditional Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208 Hunan, China. Electronic address:
Background: Depression is a leading chronic mental illness worldwide, characterized by anhedonia and pessimism. Connexin is a kind of widely distributed protein in the body. Connexin 43 (Cx43) plays an important role in the pathogenesis of depression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!