Modelling Motility: The Mathematics of Spermatozoa.

Front Cell Dev Biol

Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom.

Published: July 2021

In one of the first examples of how mechanics can inform axonemal mechanism, Machin's study in the 1950s highlighted that observations of sperm motility cannot be explained by molecular motors in the cell membrane, but would instead require motors distributed along the flagellum. Ever since, mechanics and hydrodynamics have been recognised as important in explaining the dynamics, regulation, and guidance of sperm. More recently, the digitisation of sperm videomicroscopy, coupled with numerous modelling and methodological advances, has been bringing forth a new era of scientific discovery in this field. In this review, we survey these advances before highlighting the opportunities that have been generated for both recent research and the development of further open questions, in terms of the detailed characterisation of the sperm flagellum beat and its mechanics, together with the associated impact on cell behaviour. In particular, diverse examples are explored within this theme, ranging from how collective behaviours emerge from individual cell responses, including how these responses are impacted by the local microenvironment, to the integration of separate advances in the fields of flagellar analysis and flagellar mechanics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8329702PMC
http://dx.doi.org/10.3389/fcell.2021.710825DOI Listing

Publication Analysis

Top Keywords

modelling motility
4
motility mathematics
4
mathematics spermatozoa
4
spermatozoa examples
4
mechanics
4
examples mechanics
4
mechanics inform
4
inform axonemal
4
axonemal mechanism
4
mechanism machin's
4

Similar Publications

Introduction: Thermal ablative methods (such as argon plasma coagulation (APC) and soft tip snare coagulation (STSC) are commonly used to treat polyp margins. We aim to appraise the current literature and compare clinical outcomes between patients with treated (with APC vs. STSC) and non-treated endoscopic mucosal resection (EMR) margins.

View Article and Find Full Text PDF

Synaptic vesicle (SV) trafficking toward the plasma membrane (PM) and subsequent SV maturation are essential for neurotransmitter release. These processes, including SV docking and priming, are co-ordinated by various proteins, such as SNAREs, Munc13 and synaptotagmin (Syt), which connect (tether) the SV to the PM. Here, we investigated how tethers of varying lengths mediate SV docking using a simplified mathematical model.

View Article and Find Full Text PDF

Oxidation of dopamine can cause various side effects, which ultimately leads to cell death and contributes to Parkinson's disease (PD). To counteract dopamine oxidation, newly synthesized dopamine is quickly transported into vesicles via vesicular monoamine transporter 2 (VMAT2) for storage. VMAT2 expression is reduced in patients with PD, and studies have shown increased accumulation of dopamine oxidation byproducts and α-synuclein in animals with low VMAT2 expression.

View Article and Find Full Text PDF

GNG2 inhibits brain metastases from colorectal cancer via PI3K/AKT/mTOR signaling pathway.

Sci Rep

January 2025

Department of Gastrointestinal Surgery, Third Xiangya Hospital, Central South University, Changsha, 410006, China.

G-protein gamma subunit 2 (GNG2) plays a vital role in various cellular processes, yet its specific function in colorectal cancer (CRC), particularly in highly invasive cases and brain metastasis, remains unclear. This study identifies GNG2 as a key regulator in metastatic colorectal cancer (mCRC) through bioinformatics analysis and experimental validation. Functional enrichment analyses reveal that GNG2 is related to the PI3K/AKT/mTOR signaling pathway and cell cycle regulation.

View Article and Find Full Text PDF

[Effects of Xihuang Pills on angiogenesis, invasion, and metastasis of p rostate cancer based on FAK/Src/ERK pathway].

Zhongguo Zhong Yao Za Zhi

December 2024

Hunan Provincial Key Laboratory of Traditional Chinese Medicine Prescription and Transformation, Hunan University of Chinese Medicine Changsha 410208, China Key Laboratory of Tumor Prevention Mechanism of Traditional Chinese Medicine,Hunan University of Chinese Medicine Changsha 410208, China Key Laboratory of Traditional Chinese Medicine Tumour in Hunan Universities, Hunan University of Chinese Medicine Changsha 410208, China College of Integrative Medicine, Hunan University of Chinese Medicine Changsha 410208, China.

Based on the focal adhesion kinase(FAK)/steroid receptor coactivator(Src)/extracellular regulated protein kinase(ERK) pathway, this study explored the effects of Xihuang Pills on angiogenesis, invasion, and metastasis in prostate cancer. Liquid chromatography-tandem mass spectrometry(LC-MS/MS) was used to analyze and identify the active ingredients of Xihuang Pills. Bioinformatics techniques, including R language and Perl programs, were employed to analyze the interactions between prostate cancer-related targets and the potential targets of Xihuang Pills.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!