Nanopore probing of molecular level transport of proteins is strongly influenced by electrolyte type, concentration, and solution pH. As a result, electrolyte chemistry and applied voltage are critical for protein transport and impact, for example, capture rate ( ), transport mechanism (, electrophoresis, electroosmosis or diffusion), and 3D conformation (, chaotropic kosmotropic effects). In this study, we explored these using 0.5-4 M LiCl and KCl electrolytes with holo-human serum transferrin (hSTf) protein as the model protein in both low (±50 mV) and high (±400 mV) electric field regimes. Unlike in KCl, where events were purely electrophoretic, the transport in LiCl transitioned from electrophoretic to electroosmotic with decreasing salt concentration while intermediate concentrations (, 2 M and 2.5 M) were influenced by diffusion. Segregating diffusion-limited capture rate ( ) into electrophoretic ( ) and electroosmotic ( ) components provided an approach to calculate the zeta-potential of hSTf ( ) with the aid of and zeta potential of the nanopore surface ( ) with ( - ) governing the transport mechanism. Scrutinization of the conventional excluded volume model revealed its shortcomings in capturing surface contributions and a new model was then developed to fit the translocation characteristics of proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8285365 | PMC |
http://dx.doi.org/10.1039/d1ra03903b | DOI Listing |
J Phys Chem Lett
January 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
Efficient capture of single-stranded DNA (ssDNA) is crucial for high-throughput sequencing, which influences the speed and accuracy of genetic analysis. Electrophoresis (EP) and electro-osmotic flow (EOF) have a significant impact on the translocation behavior of ssDNA through the nanopore. Experimentally, dynamically tracking these two effects remains challenging, and conventional numerical methods also struggle to capture their dynamic properties in the presence of DNA.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China.
Transdermal insulin delivery in a painless, convenient, and on-demand way remains a long-standing challenge. A variety of smart microneedles (MNs) fabricated by glucose-responsive phenylboronic acid hydrogels have been previously developed to provide painless and autonomous insulin release in response to a glucose level change. However, like the majority of MNs, their transdermal delivery efficiency was still relatively low compared to that with subcutaneous injection.
View Article and Find Full Text PDFElectrophoresis
December 2024
RAM Software Solutions, Tucson, Arizona, USA.
The dynamics of three one-step focusing protocols described in the literature for IEF-MS analyses of proteins are assessed by computer simulation. Focusing of 101 carrier ampholytes (pI range 3.0-11.
View Article and Find Full Text PDFSoft Matter
November 2024
Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
Eukaryotic cells sense and follow electric fields during wound healing and embryogenesis - this is called galvanotaxis. Galvanotaxis is believed to be driven by the redistribution of "sensors" - potentially transmembrane proteins or other molecules - through electrophoresis and electroosmosis. Here, we update our previous model of the limits of galvanotaxis due to the stochasticity of sensor movements to account for cell shape and orientation.
View Article and Find Full Text PDFRSC Adv
September 2024
School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology Tehran Iran.
This study explores the efficacy of a ceramic membrane combining filtration, electrofiltration, and backwashing for oily water treatment. A secondary mullite membrane was synthesized, showcasing high permeate flux (534 LMH), biaxial flexural strength (75.21 MPa), and cost-effectiveness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!