Drought is one of the most critical abiotic stresses that threaten crop production worldwide. This stress affects the rice crop in all stages of rice development; however, the occurrence during reproductive and grain-filling stages has the most impact on grain yield. Although many global transcriptomic studies have been performed during the reproductive stage in rice, very limited information is available for the grain-filling stage. Hence, we intend to investigate how the rice plant responds to drought stress during the grain-filling stage and how the responses change over time under field conditions. Two rice genotypes were selected for RNA-seq analysis: '4610', previously reported as a moderately tolerant breeding line, and Rondo, an elite rice cultivar susceptible to drought conditions. Additionally, 10 agronomic traits were evaluated under normal irrigated and drought conditions. Leaf tissues were collected during grain-filling stages at two time points, 14 and 21 days after the drought treatment, from both the drought field and normal irrigated field conditions. Based on agronomic performances, '4610' was less negatively affected than Rondo under mild drought conditions, and expression profiling largely aligned with the phenotypic data. The transcriptomic data indicated that, in general, '4610' had much earlier responses than its counterpart in mitigating the impact of drought stress. Several key genes and gene families related to drought stress or stress-related conditions were found differentially expressed in this study, including transcription factors, drought tolerance genes and reactive oxygen species scavengers. Furthermore, this study identified novel differentially expressed genes (DEGs) without function annotations that may play roles in drought tolerance-related functions. Some of the important DEGs detected in this study can be targeted for future research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8331054 | PMC |
http://dx.doi.org/10.1093/aobpla/plab043 | DOI Listing |
BMC Genomics
January 2025
Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.
Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.
View Article and Find Full Text PDFPlants (Basel)
January 2025
The New Zealand Institute for Plant & Food Research Limited, 120 Mt Albert Road, Auckland 1025, New Zealand.
Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in biotic and abiotic stress responses, as well as development. CPK3 () is involved with plant signaling pathways such as stomatal movement regulation, salt stress response, apoptosis, seed germination and pathogen defense. In this study, and its orthologues in relatively distant plant species such as rice (, monocot) and kiwifruit (, asterid eudicot) were analyzed in response to drought, bacteria, fungi, and virus infections.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche (UNIVPM), Via Brecce Bianche 10, 60131 Ancona, Italy.
Water scarcity is an ecological issue affecting over 10% of Europe. It is intensified by rising temperatures, leading to greater evaporation and reduced precipitation. Agriculture has been confirmed as the sector accounting for the highest water consumption globally, and it faces significant challenges relating to drought, impacting crop yields and food security.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department Biosciences and Territory, University of Molise, 86090 Pesche, Italy.
In the Mediterranean basin, urban forests are widely recognized as essential landscape components, playing a key role in nature-based solutions by enhancing environmental quality and providing a range of ecosystem services. The selection of woody plant species for afforestation and reforestation should prioritize native species that align with the biogeographical and ecological characteristics of the planting sites. Among these, L.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou 730000, China.
Turcz. is a winter annual species of the Asteraceae family, distributed in sandy areas of northern China, and is crucial for wind avoidance and sand fixation. To understand the inter- and intra-annual population dynamics of in its cold desert habitats, we conducted long- and short-term demographic studies to investigate the timing of germination, seedling survival, soil seed bank and seed longevity of natural populations on the fringe of the Tengger Desert.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!