Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The main focus of this work is a novel framework for the joint reconstruction and segmentation of parallel MRI (PMRI) brain data. We introduce an image domain deep network for calibrationless recovery of undersampled PMRI data. The proposed approach is the deep-learning (DL) based generalization of local low-rank based approaches for uncalibrated PMRI recovery including CLEAR [6]. Since the image domain approach exploits additional annihilation relations compared to k-space based approaches, we expect it to offer improved performance. To minimize segmentation errors resulting from undersampling artifacts, we combined the proposed scheme with a segmentation network and trained it in an end-to-end fashion. In addition to reducing segmentation errors, this approach also offers improved reconstruction performance by reducing overfitting; the reconstructed images exhibit reduced blurring and sharper edges than independently trained reconstruction network.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8330410 | PMC |
http://dx.doi.org/10.1109/isbi48211.2021.9434056 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!