Background: Glioblastoma (GBM), one of the most aggressive tumors of the brain, has no effective or sufficient therapies. Identifying robust biomarkers for the response to immune checkpoint blockade (ICB) therapy, a promising treatment option for GBM patients, is urgently needed.
Methods: We comprehensively evaluated lncRNA mA modification patterns in mA-sequencing (mA-seq) data for GBM tissues and systematically investigated the immune and stromal regulators of these mA-regulated lncRNAs. We used the single-sample gene-set enrichment analysis (ssGSEA) algorithm to investigate the difference in enriched tumor microenvironment (TME) infiltrating cells and the functional annotation of HSPA7 in individual GBM samples. Further, we validated that HSPA7 promoted the recruitment of macrophages into GBM TME , as well as in our GBM tissue section. We also explored its impact on the efficacy of ICB therapy using the patient-derived glioblastoma organoid (GBO) model.
Results: Here, we depicted the first transcriptome-wide mA methylation profile of lncRNAs in GBM, revealing highly distinct lncRNA mA modification patterns compared to those in normal brain tissues. We identified the mA-modified pseudogene HSPA7 as a novel prognostic risk factor in GBM patients, with crucial roles in immunophenotype determination, stromal activation, and carcinogenic pathway activation. We confirmed that HSPA7 promoted macrophage infiltration and SPP1 expression upregulating the YAP1 and LOX expression of glioblastoma stem cells (GSCs) and in our clinical GBM tumor samples. We also confirmed that knockdown of HSPA7 might increase the efficiency of anti-PD1 therapy utilizing the GBO model, highlighting its potential as a novel target for immunotherapy.
Conclusions: Our results indicated that HSPA7 could be a novel immunotherapy target for GBM patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8329659 | PMC |
http://dx.doi.org/10.3389/fimmu.2021.653711 | DOI Listing |
Cell Death Dis
January 2025
Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA.
The association of necrosis in tumors with poor prognosis implies a potential tumor-promoting role. However, the mechanisms underlying cell death in this context and how damaged tissue contributes to tumor progression remain unclear. Here, we identified p38 mitogen-activated protein kinases (p38 MAPK, a.
View Article and Find Full Text PDFActa Biomater
January 2025
Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America. Electronic address:
Pro-tumoral M2 tumor-associated macrophages (TAMs) play a critical role in the tumor immune microenvironment (TIME), making them an important therapeutic target for cancer treatment. Approaches for imaging and monitoring M2 TAMs, as well as tracking their changes in response to tumor progression or treatment are highly sought-after but remain underdeveloped. Here, we report an M2-targeted magnetic resonance imaging (MRI) probe based on sub-5 nm ultrafine iron oxide nanoparticles (uIONP), featuring an anti-biofouling coating to prevent non-specific macrophage uptake and an M2-specific peptide ligand (M2pep) for active targeting of M2 TAMs.
View Article and Find Full Text PDFSpine J
January 2025
Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China. Electronic address:
Background: In clinical practice, distinguishing between spinal tuberculosis (STB) and spinal tumors (ST) poses a significant diagnostic challenge. The application of AI-driven large language models (LLMs) shows great potential for improving the accuracy of this differential diagnosis.
Purpose: To evaluate the performance of various machine learning models and ChatGPT-4 in distinguishing between STB and ST.
Ther Clin Risk Manag
January 2025
Department of Oncology, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China.
Background: The relationship between molecular phenotype and prognosis in high-grade gliomas (WHO III and IV, HGG) treated with radiotherapy and chemotherapy is not fully understood and needs further exploration.
Methods: The HGG patients following surgery and treatment with radiotherapy and chemotherapy. Univariate and multivariate Cox analyses were used to assess the independent prognostic factors.
Acta Neuropathol Commun
January 2025
Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
Glioblastoma (GBM) is a highly aggressive adult brain cancer, characterised by poor prognosis and a dismal five-year survival rate. Despite significant knowledge gains in tumour biology, meaningful advances in patient survival remain elusive. The field of neuro-oncology faces many disease obstacles, one being the paucity of faithful models to advance preclinical research and guide personalised medicine approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!