[3H]Inositol-prelabelled isolated rat adrenal glomerulosa cells were stimulated with 25 nM-AII ([Asp1, Ile5]-angiotensin II) in the presence of 10 mM-Li+, and the resulting inositol monophosphate isomers were separated successfully by using a recently developed h.p.l.c. methodology. Two major peaks of radioactivity were detected which showed the same retention characteristics on h.p.l.c. as inositol 4-phosphate and inositol 1-phosphate and which increased 5-fold and 8-fold respectively on stimulation with AII. In addition, a relatively small peak with the retention characteristics of inositol 1:2-cyclic phosphate was seen to undergo a 1.5-fold increase on stimulation. This was not considered sufficient to suggest that cyclic phosphoinositols were a major product of AII-stimulated phosphoinositide turnover. No peaks of radioactive material were detected in the regions expected for inositol 2-phosphate (an acid hydrolysis product of inositol 1:2-cyclic phosphate) or inositol 5-phosphate. These results establish the identity of the major inositol phosphate products in AII-stimulated glomerulosa cells and confirm and extend the previous observations of Balla, Baukal, Guillemette, Morgan & Catt [(1986) Proc. Natl. Acad. Sci. 83, 9323-9327].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1148519PMC
http://dx.doi.org/10.1042/bj2480203DOI Listing

Publication Analysis

Top Keywords

glomerulosa cells
12
inositol
9
inositol monophosphate
8
monophosphate isomers
8
rat adrenal
8
adrenal glomerulosa
8
retention characteristics
8
inositol 12-cyclic
8
12-cyclic phosphate
8
hplc analysis
4

Similar Publications

The zona glomerulosa (ZG) synthesizes the mineralocorticoid aldosterone. The primary role of aldosterone is the maintenance of volume and electrolyte homeostasis. Aldosterone synthesis is primarily regulated via tightly controlled oscillations in intracellular calcium levels in response to stimulation.

View Article and Find Full Text PDF

Aldosterone-producing adenoma (APA) is a leading cause of primary aldosteronism (PA), a condition marked by excessive aldosterone secretion. CYP11B2, the aldosterone synthase, plays a critical role in aldosterone biosynthesis and the development of APA. Despite its significance, encoding regulatory mechanisms governing CYP11B2, particularly its degradation, remain poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • Primary aldosteronism is a condition marked by excessive aldosterone production due to adrenal gland lesions, primarily characterized by disrupted regulation of aldosterone synthase (CYP11B2).
  • In a study of aldosterone-producing adenomas (APAs) without known mutations, researchers discovered specific mutations in the gene for mucolipin-3 (TRPML3) associated with increased calcium activity and aldosterone production.
  • These findings suggest that mutations in TRPML3 may contribute to hormone excess in primary aldosteronism, highlighting the disease's underlying genetic factors and their impact on hypertension.
View Article and Find Full Text PDF
Article Synopsis
  • Wnt/β-catenin signaling is crucial for developing adrenal glands, and the protein ZNRF3 regulates this pathway by interacting with R-spondin.
  • A deletion in exon 2 of ZNRF3, linked to congenital adrenal hypoplasia in humans, impairs this interaction and affects β-catenin expression.
  • Mice with a similar ZNRF3 deletion exhibit adrenocortical development changes but do not develop congenital adrenal hypoplasia, showing a variation in how this genetic alteration impacts different species.
View Article and Find Full Text PDF

Evaluating the role of aldosterone synthesis on adrenal cell fate.

Front Endocrinol (Lausanne)

August 2024

Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.

Hypertension affects one-third of the adult population worldwide, with primary aldosteronism (PA) accounting for at least 5-10% of these cases. The aldosterone synthase enzyme (CYP11B2) plays a pivotal role in PA manifestation, as increased expression of CYP11B2 leads to excess aldosterone synthesis. Physiological expression of CYP11B2 in humans is normally limited to cells of the adrenal zona glomerulosa under tight homeostatic regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!