Transposable elements (TEs) promote genetic innovation but also threaten genome stability. Despite multiple layers of host defence, TEs actively shape mammalian-specific developmental processes, particularly during pre-implantation and extra-embryonic development and at the maternal-fetal interface. Here, we review how TEs influence mammalian genomes both directly by providing the raw material for genetic change and indirectly via co-evolving TE-binding Krüppel-associated box zinc finger proteins (KRAB-ZFPs). Throughout mammalian evolution, individual activities of ancient TEs were co-opted to enable invasive placentation that characterizes live-born mammals. By contrast, the widespread activity of evolutionarily young TEs may reflect an ongoing co-evolution that continues to impact mammalian development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41576-021-00385-1 | DOI Listing |
Microb Pathog
January 2025
Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, INDIA. Electronic address:
Fungal hybrids arise through the interbreeding of distinct species. This hybridization process fosters increased genetic diversity and the emergence of new traits. Mechanisms driving hybridization include the loss of heterozygosity, copy number variations, and horizontal gene transfer.
View Article and Find Full Text PDFUnlabelled: is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and . CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML), and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing de-repression of silenced elements in heterochromatin.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, College of Horticulture, Hebei Agricultural University, Baoding 071000, China; Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia. Electronic address:
Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of tomato wilt disease, is a soil-borne, vascular-colonizing fungal pathogen that severely impacts tomato production in most growing regions worldwide.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada.
Stinging nettles () have a long history of association with human civilization, having been used as a source of textile fibers, food and medicine. Here, we present a chromosome-level, phased genome assembly for a diploid female clone of from Romania. Using a combination of PacBio HiFi, Oxford Nanopore, and Illumina sequencing, as well as Hi-C long-range interaction data (using a novel Hi-C protocol presented here), we assembled two haplotypes of 574.
View Article and Find Full Text PDFGenes Dev
January 2025
Institute for Research on Cancer and Aging of Nice (IRCAN), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), University Cote d'Azur, Nice 06107, France
Long interspersed element-1 (LINE-1) retrotransposons are abundant transposable elements in mammals and significantly influence chromosome structure, chromatin organization, and 3D genome architecture. In this issue of , Ataei et al. (doi:10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!