Endogenous stress-related signal directs shoot stem cell fate in Arabidopsis thaliana.

Nat Plants

Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.

Published: September 2021

Stem cell populations in all multicellular organisms are situated in a niche, which is a special microenvironment that defines stem cell fate. The interplay between stem cells and their niches is crucial for stem cell maintenance. Here, we show that an endogenous stress-related signal (ESS) is overrepresented in the shoot stem cell niche under natural growth conditions, and the vast majority of known stem-cell-specific and niche-specific genes responded to stress signals. Interference with the ESS in the stem cell niche by blocking ethylene signalling impaired stem cell maintenance. Ethylene-insensitive 3 (EIN3), the key transcription factor in ethylene signalling, directly actives the expression of the stress hub transcription factor AGAMOUS-LIKE 22 (AGL22) in the stem cell niche and relays ESS signals to the WUSCHEL/CLAVATA network. Our results provide a mechanistic framework for ESS signalling control of the stem cell niche and demonstrate that plant stem cells are maintained by a native stress microenvironment in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41477-021-00985-zDOI Listing

Publication Analysis

Top Keywords

stem cell
36
cell niche
16
stem
11
cell
9
endogenous stress-related
8
stress-related signal
8
shoot stem
8
cell fate
8
stem cells
8
cell maintenance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!