Microchannelled alkylated chitosan sponge to treat noncompressible hemorrhages and facilitate wound healing.

Nat Commun

College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education),Tianjin Center Hospital of Obstetrics and Gynecology, State Key Laboratory of Medicine Chemical Biology, Nankai University, Tianjin, China.

Published: August 2021

Developing an anti-infective shape-memory hemostatic sponge able to guide in situ tissue regeneration for noncompressible hemorrhages in civilian and battlefield settings remains a challenge. Here we engineer hemostatic chitosan sponges with highly interconnective microchannels by combining 3D printed microfiber leaching, freeze-drying, and superficial active modification. We demonstrate that the microchannelled alkylated chitosan sponge (MACS) exhibits the capacity for water and blood absorption, as well as rapid shape recovery. We show that compared to clinically used gauze, gelatin sponge, CELOX™, and CELOX™-gauze, the MACS provides higher pro-coagulant and hemostatic capacities in lethally normal and heparinized rat and pig liver perforation wound models. We demonstrate its anti-infective activity against S. aureus and E. coli and its promotion of liver parenchymal cell infiltration, vascularization, and tissue integration in a rat liver defect model. Overall, the MACS demonstrates promising clinical translational potential in treating lethal noncompressible hemorrhage and facilitating wound healing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8342549PMC
http://dx.doi.org/10.1038/s41467-021-24972-2DOI Listing

Publication Analysis

Top Keywords

microchannelled alkylated
8
alkylated chitosan
8
chitosan sponge
8
noncompressible hemorrhages
8
wound healing
8
sponge
4
sponge treat
4
treat noncompressible
4
hemorrhages facilitate
4
facilitate wound
4

Similar Publications

Microchannelled alkylated chitosan sponge to treat noncompressible hemorrhages and facilitate wound healing.

Nat Commun

August 2021

College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education),Tianjin Center Hospital of Obstetrics and Gynecology, State Key Laboratory of Medicine Chemical Biology, Nankai University, Tianjin, China.

Developing an anti-infective shape-memory hemostatic sponge able to guide in situ tissue regeneration for noncompressible hemorrhages in civilian and battlefield settings remains a challenge. Here we engineer hemostatic chitosan sponges with highly interconnective microchannels by combining 3D printed microfiber leaching, freeze-drying, and superficial active modification. We demonstrate that the microchannelled alkylated chitosan sponge (MACS) exhibits the capacity for water and blood absorption, as well as rapid shape recovery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!